Fans pick 100 books like Fundamentals of Data Visualization

By Claus O. Wilke,

Here are 100 books that Fundamentals of Data Visualization fans have personally recommended if you like Fundamentals of Data Visualization. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of The Art of Statistics: How to Learn from Data

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

What if you are faced with a problem for which a standard approach doesn’t yet exist? In such a case, you will need to be able to figure out the approach from the first principles. This book will help you learn how to derive insights starting from raw data.

By David Spiegelhalter,

Why should I read it?

2 authors picked The Art of Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

'A statistical national treasure' Jeremy Vine, BBC Radio 2

'Required reading for all politicians, journalists, medics and anyone who tries to influence people (or is influenced) by statistics. A tour de force' Popular Science

Do busier hospitals have higher survival rates? How many trees are there on the planet? Why do old men have big ears? David Spiegelhalter reveals the answers to these and many other questions - questions that can only be addressed using statistical science.

Statistics has played a leading role in our scientific understanding of the world for centuries, yet we are all familiar with the way…


Book cover of Effective Pandas

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

Even if you are ultimately going to be working with terabytes of data, you’ll start out doing exploratory data analysis. The tool that you’ll use for that is most likely going to be Pandas. One of the best investments that you can make when becoming a data scientist is to become a Pandas expert, and there is no better book than Harrison’s to help you get there. Plus, many of the interview questions you will face during the hiring process will probably involve Pandas. Blow your interviewers out of the water by showing them corners of the Pandas library they didn’t even know!

By Matt Harrison,

Why should I read it?

1 author picked Effective Pandas as one of their favorite books, and they share why you should read it.

What is this book about?

Best practices for manipulating data with Pandas. This book will arm you with years of knowledge and experience that are condensed into an easy to follow format. Rather than taking months reading blogs and websites and searching mailing lists and groups, this book will teach you how to write good Pandas code.

It covers: Series manipulation Creating columns Summary statistics Grouping, pivoting, and cross-tabulation Time series data Visualization Chaining Debugging code and more...


Book cover of Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

As a data scientist in the industry, it is very helpful to understand the business context behind the problems that you are solving. In many cases, you are trying to predict behavior—who is likely to buy an item, who is likely to click on a link, who is likely to repay a loan, etc.

This book by Eric Siegel is a great introduction to predictive analytics as used in real-life. It will help you frame data science problems in standard ways. For example, suppose you are asked to score sales leads so that salespeople can prioritize their efforts. How would you do it? The common way to frame this problem is to predict the customer lifetime value (LTV) of every sales lead. Before you can do prediction, you have to be able to do analysis though.

The way you estimate the LTV is to break the problem into three sub-problems:…

By Eric Siegel,

Why should I read it?

1 author picked Predictive Analytics as one of their favorite books, and they share why you should read it.

What is this book about?

"Mesmerizing & fascinating..." -The Seattle Post-Intelligencer

"The Freakonomics of big data." -Stein Kretsinger, founding executive of Advertising.com

Award-winning | Used by over 30 universities | Translated into 9 languages

An introduction for everyone. In this rich, fascinating - surprisingly accessible - introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a "how to" for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques.

Prediction is booming. It reinvents industries and runs the world. Companies, governments, law…


If you love Fundamentals of Data Visualization...

Ad

Book cover of The Coaching Habit: Say Less, Ask More & Change the Way You Lead Forever

The Coaching Habit by Michael Bungay Stanier,

The coaching book that's for all of us, not just coaches.

It's the best-selling book on coaching this century, with 15k+ online reviews. Brené Brown calls it "a classic". Dan Pink said it was "essential".

It is practical, funny, and short, and "unweirds" coaching. Whether you're a parent, a teacher,…

Book cover of Jumpstart Snowflake: A Step-by-Step Guide to Modern Cloud Analytics

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

In industry, your data is very likely to live within a data warehouse such as BigQuery, Redshift, or Snowflake. Therefore, to be an effective data scientist in the industry, you should learn how to use data warehouses effectively. 

Once you learn data warehousing and SQL with any one of these products, it is quite easy to pick up another. So which one do you start with?

You can use Snowflake on all three of the major public clouds. Because it’s a standalone product, it is the most similar to a “traditional” data warehouse and can be picked up easily even if you are not familiar with cloud computing. That makes it a good data warehouse to start with, and is the reason my second book pick is this book on Snowflake.

BigQuery is also available on all three major public clouds, but it works best (and is used most commonly)…

By Dmitry Anoshin, Dmitry Shirokov, Donna Strok

Why should I read it?

1 author picked Jumpstart Snowflake as one of their favorite books, and they share why you should read it.

What is this book about?

Explore the modern market of data analytics platforms and the benefits of using Snowflake computing, the data warehouse built for the cloud.

With the rise of cloud technologies, organizations prefer to deploy their analytics using cloud providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform. Cloud vendors are offering modern data platforms for building cloud analytics solutions to collect data and consolidate into single storage solutions that provide insights for business users. The core of any analytics framework is the data warehouse, and previously customers did not have many choices of platform to use.

Snowflake was…


Book cover of Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Data scientists and analytics specialists are great at building models and algorithms, but often wrap them in a presentation or dashboard that diminishes their value and reduces the likelihood of their work being adopted. This book encourages practitioners to always consider the last mile and to pay as much attention to presentation and aesthetics as we do to the model itself. 

By Brent Dykes,

Why should I read it?

1 author picked Effective Data Storytelling as one of their favorite books, and they share why you should read it.

What is this book about?

Master the art and science of data storytelling-with frameworks and techniques to help you craft compelling stories with data.

The ability to effectively communicate with data is no longer a luxury in today's economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative-to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories.

Narratives are more powerful than raw statistics, more enduring than pretty charts. When…


Book cover of W. E. B. Du Bois's Data Portraits: Visualizing Black America

Colin Koopman Author Of How We Became Our Data: A Genealogy of the Informational Person

From my list on data ethics (and data politics).

Why am I passionate about this?

Colin Koopman researches and teaches about technology ethics at the University of Oregon, where he is a Professor of Philosophy and Director of the interdisciplinary certificate program in New Media & Culture.  His research pursuits have spanned from the history of efforts in the early twentieth century to standardize birth certificates to our understanding of ourselves as effects of the code inscribed into our genes.  Koopman is currently at work on a book that will develop our understanding of what it takes to achieve equality and fairness in data systems, tentatively titled Data Equals.

Colin's book list on data ethics (and data politics)

Colin Koopman Why did Colin love this book?

W.E.B. Du Bois is widely acknowledged as the leading activist for racial equality of his generation. But until very recently little had been known of his deep commitment to the pursuit of equality within and through data technology. As Du Bois was preparing notes for his famous 1903 book The Souls of Black Folk, he was also preparing an exposition of what we would today call “infographics” (or what the editors of this volume aptly call “data portraits”) for exhibition at the 1900 Paris Exposition world’s fair. This volume handsomely reproduces for the first time a full-color complete set of Du Bois’s charts, graphs, maps, and ingenious spirals. A beautiful book to live with, it also subtly transforms one’s understanding of the history of racial progress and inequality in America.

By The W E B Du Bois Center at the Universi,

Why should I read it?

3 authors picked W. E. B. Du Bois's Data Portraits as one of their favorite books, and they share why you should read it.

What is this book about?

"As visually arresting as it is informative."-The Boston Globe

"Du Bois's bold colors and geometric shapes were decades ahead of modernist graphic design in America."-Fast Company's Co.Design

W.E.B. Du Bois's Data Portraits is the first complete publication of W.E.B. Du Bois's groundbreaking charts, graphs, and maps presented at the 1900 Paris Exposition.

Famed sociologist, writer, and Black rights activist W.E.B. Du Bois fundamentally changed the representation of Black Americans with his exhibition of data visualizations at the 1900 Paris Exposition. Beautiful in design and powerful in content, these data portraits make visible a wide spectrum of African American culture, from…


Book cover of Thing Explainer: Complicated Stuff in Simple Words

Davis Baird Author Of Thing Knowledge: A Philosophy of Scientific Instruments

From my list on how the things in our world get made and work.

Why am I passionate about this?

I am not very good at making things. I am good enough to appreciate the craftsmanship of those much better than me. I am more of an ideas person, perhaps why I ended up with a PhD in Philosophy of Science. But I have always held a secret admiration—with a tinge of envy—for people who are makers. As I went deeper into my career as a philosopher of science, I became aware that the material/making aspect of science—and technology—was largely ignored by ideas-obsessed philosophers. So, this is where I focused my attention, and I’ve loved vicariously being able to be part of making the world.

Davis' book list on how the things in our world get made and work

Davis Baird Why did Davis love this book?

When I was a kid, one of my favorite books was The Way Things Work, not the more recent David Macaulay book—which is also good—but the earlier 1967 book by T. Lodewijk. With great diagrams, it showed how complicated machines work.

Randall Munroe's Thing Explainer, while less comprehensive, similarly captures this magic for me. It has great diagrams and simple clarifying text—self-consciously limited to the 1,000 words people use the most. I could stare at the diagrams for hours, learning about everything from cameras (“picture takers”) to submarines (“boats that go under the sea”).

By Randall Munroe,

Why should I read it?

1 author picked Thing Explainer as one of their favorite books, and they share why you should read it.

What is this book about?

From the No. 1 bestselling author of What If? - the man who created xkcd and explained the laws of science with cartoons - comes a series of brilliantly simple diagrams ('blueprints' if you want to be complicated about it) that show how important things work: from the nuclear bomb to the biro.

It's good to know what the parts of a thing are called, but it's much more interesting to know what they do. Richard Feynman once said that if you can't explain something to a first-year student, you don't really get it. In Thing Explainer, Randall Munroe takes…


Book cover of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

For those intending to use R with an eye on the popular 'Tidyverse' suite of packages – which facilitate the handling, manipulation, and visualisation of data setsit's hard to go past this book. From the founding contributors of the RStudio/Tidyverse worlds, this is a great way to learn about this dialect of R against the overarching backdrop of statistical data analysis and data science.

By Hadley Wickham, Garrett Grolemund,

Why should I read it?

1 author picked R for Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along…


Book cover of Semiology of Graphics: Diagrams, Networks, Maps

Danyel Fisher Author Of Making Data Visual: A Practical Guide to Using Visualization for Insight

From my list on to inspire you to think differently about data.

Why am I passionate about this?

In sixth grade, my teacher tried to teach the class how to read line charts – and something fell into place for me. Ever since then, I’ve tried to sort data into forms that we can use to make sense of it. As a researcher at Microsoft, I consulted with teams across the organization – from sales to legal; and from Excel to XBox – to help them understand their data. At Honeycomb, I design tools for software operations teams to diagnose their complex systems. These books each gave me an “ah-hah” moment that made me think differently about the craft of creating visualization. They now sit on my shelf in easy reach – I hope you find them fascinating too.

Danyel's book list on to inspire you to think differently about data

Danyel Fisher Why did Danyel love this book?

A new edition of Bertin’s 1963 Semiology was released a few years ago, and my heart swelled with joy. For years, I’d worked off of bad photocopies of an inter-library loan book that had long since gone out of print. In this new edition, I could see how Bertin works through different dimensions and axes – when you want to plot two different quantitative axes over a map, what are your choices? What if you want to plot them over a graph, instead? What changes? I loved exploring these choices with Bertin, as he explores how different color mappings, iconic representations, and design choices change the way the reader interprets the graph.

By Jacques Bertin,

Why should I read it?

1 author picked Semiology of Graphics as one of their favorite books, and they share why you should read it.

What is this book about?

Originally published in French in 1967, Semiology of Graphics is internationally recognized as a foundational work in the fields of design and cartography. Based on Jacques Bertin's practical experience as a cartographer, part one of this work is an unprecedented attempt to synthesize principles of graphic communication with the logic of standard rules applied to writing and topography. Part two brings Bertin's theory to life, presenting a close study of graphic techniques, including shape, orientation, colour, texture, volume, and size, in an array of more than 1,000 maps and diagrams.


Book cover of Social Sciences as Sorcery

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

This book is now 50 years old, but its message is as relevant and important now as when it was written. In a series of witty essays that border on rants, Andreski attacks much of social science as fluff obscured by technical jargon and methodology. In particular, he laments the growth of quantitative methods as an attempt to add objectivity to social science and make it appear “harder.” True objectivity is about more than mechanical number-crunching, he says; it’s about a commitment to fairness and resisting the temptations of wishful thinking – a challenge anyone who works with data concerning people and their lives should take seriously.

By Stanislav Andreski,

Why should I read it?

1 author picked Social Sciences as Sorcery as one of their favorite books, and they share why you should read it.

What is this book about?

"Seldom have the social sciences been subject to quite so comprehensive, yet non-partisan, attack. There can be little doubt SOCIAL SCIENCES AS SORCERY is an uncomfortably important and embarassingly comprehensive book." -- Times Literary Supplement "Liberating!" -- Harpers "Andreski has written a new book that is certain to enrage his colleagues ... He documents his charges and spares few of the luminaries of social science in the process." -- TIME Magazine


Book cover of The Art of Statistics: How to Learn from Data
Book cover of Effective Pandas
Book cover of Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,735

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in data science, social science, and presidential biography?

Data Science 24 books
Social Science 89 books