The most recommended data science books

Who picked these books? Meet our 19 experts.

19 authors created a book list connected to data science, and here are their favorite data science books.
When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

What type of data science book?

Loading...
Loading...

Book cover of Effective Pandas

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

Even if you are ultimately going to be working with terabytes of data, you’ll start out doing exploratory data analysis. The tool that you’ll use for that is most likely going to be Pandas. One of the best investments that you can make when becoming a data scientist is to become a Pandas expert, and there is no better book than Harrison’s to help you get there. Plus, many of the interview questions you will face during the hiring process will probably involve Pandas. Blow your interviewers out of the water by showing them corners of the Pandas library they didn’t even know!

By Matt Harrison,

Why should I read it?

1 author picked Effective Pandas as one of their favorite books, and they share why you should read it.

What is this book about?

Best practices for manipulating data with Pandas. This book will arm you with years of knowledge and experience that are condensed into an easy to follow format. Rather than taking months reading blogs and websites and searching mailing lists and groups, this book will teach you how to write good Pandas code.

It covers: Series manipulation Creating columns Summary statistics Grouping, pivoting, and cross-tabulation Time series data Visualization Chaining Debugging code and more...


Book cover of People Skills for Analytical Thinkers

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Since data science is, at its core, people helping people make decisions, it is essential that we can establish productive relationships with our stakeholders. This is a skill that needs to be given the same level of effort as we give to coding or statistics. Gilbert’s book is a great resource to help technically oriented people to advance their people skills.

By Gilbert Eijkelenboom,

Why should I read it?

1 author picked People Skills for Analytical Thinkers as one of their favorite books, and they share why you should read it.

What is this book about?

"For the engineer, scientist, or technology professional seeking to communicate better in the business world, this is the book you've been craving your entire career!" ”
— Douglas Laney, Innovation Fellow, West Monroe, and best-selling author of "Infonomics"

Your analytical skills are incredibly valuable. However, rational thinking alone isn’t enough.

Have you ever: Presented an idea, but then no one seemed to care? Explained your analysis, only to leave your colleague confused? Struggled to work with people who are less analytical and more emotional?

In these situations, people skills make the difference, and research shows these skills are becoming increasingly…


Book cover of Python for Everyone

Daniel Zingaro Author Of Learn to Code by Solving Problems: A Python Programming Primer

From my list on for a rock solid python programming foundation.

Why am I passionate about this?

Some programmers learn through online articles, videos, and blog posts. Not me. I need a throughline—a consistent, expert distillation of the material to take me from where I am to where I want to be. I am not good at patching together information from disparate sources. I need a great book. I have a PhD in computer science education, and I want to know what helps people learn. More importantly, I want to know how we can use such discoveries to write more effective books. The books I appreciate most are those that demonstrate not only mastery of the subject matter but also mastery of teaching.

Daniel's book list on for a rock solid python programming foundation

Daniel Zingaro Why did Daniel love this book?

I used this book for several years starting in 2013 when the first edition came out. It absolutely holds up today. Learning the Python language (the syntax) is one thing. Learning how to design programs using this syntax is another. We need both but, unfortunately, many books forgo the latter for the former. Not this book! I like the Problem Solving and Worked Example sections: they help learners apply a disciplined, step-by-step strategy to programming projects. There are multiple, varied contexts here as well, which helps capture a broader base of learners. Bonus feature: the Computing & Society boxes.

By Cay S. Horstmann, Rance D. Necaise,

Why should I read it?

1 author picked Python for Everyone as one of their favorite books, and they share why you should read it.

What is this book about?

Python for Everyone, 3rd Edition is an introduction to programming designed to serve a wide range of student interests and abilities, focused on the essentials, and on effective learning. It is suitable for a first course in programming for computer scientists, engineers, and students in other disciplines. This text requires no prior programming experience and only a modest amount of high school algebra. Objects are used where appropriate in early chapters and students start designing and implementing their own classes in Chapter 9. New to this edition are examples and exercises that focus on various aspects of data science.


Book cover of Data Sketches

Adam Fortuna

From Adam's 3 favorite reads in 2023.

Why am I passionate about this?

Programmer Community builder Playful Explorer Optimizer

Adam's 3 favorite reads in 2023

Adam Fortuna Why did Adam love this book?

Data visualizations are a cross between art, programming, and storytelling.

I've always been fascinated by the process creators go through to bring something from their imagination into existence. What amazed me was how the journey isn't a clear path from idea to finished product. I loved how Nadieh and Shirley documented their thought process – bringing me along and sharing why they made each decision.

Each chapter is a breakdown of a different data visualization. I laughed at how many of them were nerdy interests I loved: Dance Dance Revolution, Card Captor Sakura, and Lord of the Rings, to name a few. It reminded me that if I have fun, that'll show up in the finished product.

By Shirley Wu, Nadieh Bremer,

Why should I read it?

1 author picked Data Sketches as one of their favorite books, and they share why you should read it.

What is this book about?

In Data Sketches, Nadieh Bremer and Shirley Wu document the deeply creative process behind 24 unique data visualization projects, and they combine this with powerful technical insights which reveal the mindset behind coding creatively. Exploring 12 different themes - from the Olympics to Presidents & Royals and from Movies to Myths & Legends - each pair of visualizations explores different technologies and forms, blurring the boundary between visualization as an exploratory tool and an artform in its own right. This beautiful book provides an intimate, behind-the-scenes account of all 24 projects and shares the authors' personal notes and drafts every…


Book cover of Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools

Naomi R. Ceder Author Of The Quick Python Book

From my list on to level up your Python skills.

Why am I passionate about this?

I’ve been teaching and writing Python code (and managing others while they write Python code) for over 20 years. After all that time Python is still my tool of choice, and many times Python is the key part of how I explore and think about problems. My experience as a teacher also has prompted me to dig in and look for the simplest way of understanding and explaining the elegant way that Python features fit together. 

Naomi's book list on to level up your Python skills

Naomi R. Ceder Why did Naomi love this book?

I like this book not just because it’s a complete guide to the many ins and outs of data cleaning with Python, but also because David lays out the types of problems and the issues behind them. There are always trade-offs in data cleaning and this book lays out those trade-offs better than any other I’ve seen. This is one of the few books that as I go through it, I struggle to think of anything that could have been said better. 

By David Mertz,

Why should I read it?

1 author picked Cleaning Data for Effective Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

Think about your data intelligently and ask the right questions

Key Features Master data cleaning techniques necessary to perform real-world data science and machine learning tasks Spot common problems with dirty data and develop flexible solutions from first principles Test and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description

Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the…


Book cover of The Real Work of Data Science: Turning Data Into Information, Better Decisions, and Stronger Organizations

Roger W. Hoerl Author Of Statistical Thinking: Improving Business Performance

From my list on AI and data science that are actually readable.

Why am I passionate about this?

As a professional statistician, I am naturally interested in AI and data science. However, in our current information age, everyone, in all segments of society, needs to understand the basics of AI and data science. These basics include such things as what these disciplines are, what they can contribute to society, and perhaps most importantly, what can go wrong. However, I have found that much of the literature on these topics is highly technical and beyond the reach of most readers. These books are specifically selected because they are readable by virtually everyone, and yet convey the key concepts needed to be data-literate in the 21st century. Enjoy!

Roger's book list on AI and data science that are actually readable

Roger W. Hoerl Why did Roger love this book?

This book goes beyond the hype of data science, the details of machine learning methods, and the coding so closely associated with data science. Rather, it emphasizes the real types of problems for which data science may help, and explains the practical issues (“the real work”) that often lead to failure in data science projects.

These issues tend to be overlooked in more technical presentations of data science. They include such critical considerations as defining the right problem to begin with, understanding the “pedigree” (background and quality) of any data used, and ensuring that the right people are involved from the start.

By Ron S. Kenett, Thomas C. Redman,

Why should I read it?

1 author picked The Real Work of Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

The essential guide for data scientists and for leaders who must get more from their data science teams

The Economist boldly claims that data are now "the world's most valuable resource." But, as Kenett and Redman so richly describe, unlocking that value requires far more than technical excellence. The Real Work of Data Science explores understanding the problems, dealing with quality issues, building trust with decision makers, putting data science teams in the right organizational spots, and helping companies become data-driven. This is the work that spells the difference between a good data scientist and a great one, between a…


Book cover of All-in On AI: How Smart Companies Win Big with Artificial Intelligence

Flora Delaney Author Of Retail The Second-Oldest Profession: 7 Timeless Principles to WIN in Retail Today

From Flora's 3 favorite reads in 2024.

Why am I passionate about this?

Author

Flora's 3 favorite reads in 2024

Flora Delaney Why did Flora love this book?

A great way to see how AI is being used by companies and not just the future predictions of how AI could be used. Made me more open to how AI will change my industry (retail) and how people can use it to make better decisions. It kicked off my current journy to become more AI aware. As always, I appreciate anything that Thomas Davenport writes.

By Thomas H. Davenport, Nitin Mittal,

Why should I read it?

2 authors picked All-in On AI as one of their favorite books, and they share why you should read it.

What is this book about?

A Wall Street Journal bestseller

A Publisher's Weekly bestseller

A fascinating look at the trailblazing companies using artificial intelligence to create new competitive advantage, from the author of the business classic, Competing on Analytics, and the head of Deloitte's US AI practice.

Though most organizations are placing modest bets on artificial intelligence, there is a world-class group of companies that are going all-in on the technology and radically transforming their products, processes, strategies, customer relationships, and cultures.

Though these organizations represent less than 1 percent of large companies, they are all high performers in their industries. They have better business…


Book cover of Social Sciences as Sorcery

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

This book is now 50 years old, but its message is as relevant and important now as when it was written. In a series of witty essays that border on rants, Andreski attacks much of social science as fluff obscured by technical jargon and methodology. In particular, he laments the growth of quantitative methods as an attempt to add objectivity to social science and make it appear “harder.” True objectivity is about more than mechanical number-crunching, he says; it’s about a commitment to fairness and resisting the temptations of wishful thinking – a challenge anyone who works with data concerning people and their lives should take seriously.

By Stanislav Andreski,

Why should I read it?

1 author picked Social Sciences as Sorcery as one of their favorite books, and they share why you should read it.

What is this book about?

"Seldom have the social sciences been subject to quite so comprehensive, yet non-partisan, attack. There can be little doubt SOCIAL SCIENCES AS SORCERY is an uncomfortably important and embarassingly comprehensive book." -- Times Literary Supplement "Liberating!" -- Harpers "Andreski has written a new book that is certain to enrage his colleagues ... He documents his charges and spares few of the luminaries of social science in the process." -- TIME Magazine


Book cover of Biology as Ideology: The Doctrine of DNA

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

People need less Dawkins in their lives and more Lewontin, whose thought-provoking, accessible writing about evolutionary biology stands in fierce opposition to the trend toward genetic determinism that seems to be the rage nowadays. We are not simply our genes, Lewontin says, because the effects DNA has on our lives are mediated by social and environmental factors, many of which we can influence. While it’s nominally about biology, I also read this as a critique of causal inference, generally. What we consider a “cause” reveals our ideological commitments to certain aspects of the world being maintained, and we should be careful what causal lessons we draw from data.

By Richard C. Lewontin,

Why should I read it?

1 author picked Biology as Ideology as one of their favorite books, and they share why you should read it.

What is this book about?

Following in the fashion of Stephen Jay Gould and Peter Medawar, one of the world's leading scientists examines how "pure science" is in fact shaped and guided by social and political needs and assumptions.


Book cover of The Golem: What You Should Know about Science

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

The thing you should know about science is that it’s a human enterprise. As a result, it’s dependent on human factors like social consensus and prejudice. In this series of case studies of famously expensive and difficult-to-replicate experiments probing the limits of scientific understanding from biology to theoretical physics, Collins and Pinch show how scientific knowledge gathering is rarely straightforward because there are always alternative explanations available for the data. Was the phenomenon real or was the experiment set up badly? We can never know for sure, but we decide collectively what we believe. Scientists are experts participating in human culture, they argue, not mysterious clergy issuing declarations of absolute truth.

By Harry M. Collins, Trevor Pinch,

Why should I read it?

1 author picked The Golem as one of their favorite books, and they share why you should read it.

What is this book about?

Harry Collins and Trevor Pinch liken science to the Golem, a creature from Jewish mythology, powerful yet potentially dangerous, a gentle, helpful creature that may yet run amok at any moment. Through a series of intriguing case studies the authors debunk the traditional view that science is the straightforward result of competent theorisation, observation and experimentation. The very well-received first edition generated much debate, reflected in a substantial new Afterword in this second edition, which seeks to place the book in what have become known as 'the science wars'.


Book cover of Effective Pandas
Book cover of People Skills for Analytical Thinkers
Book cover of Python for Everyone

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,336

readers submitted
so far, will you?