Fans pick 27 books like Effective Pandas

By Matt Harrison,

Here are 27 books that Effective Pandas fans have personally recommended if you like Effective Pandas. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of The Art of Statistics: How to Learn from Data

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

What if you are faced with a problem for which a standard approach doesn’t yet exist? In such a case, you will need to be able to figure out the approach from the first principles. This book will help you learn how to derive insights starting from raw data.

By David Spiegelhalter,

Why should I read it?

2 authors picked The Art of Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

'A statistical national treasure' Jeremy Vine, BBC Radio 2

'Required reading for all politicians, journalists, medics and anyone who tries to influence people (or is influenced) by statistics. A tour de force' Popular Science

Do busier hospitals have higher survival rates? How many trees are there on the planet? Why do old men have big ears? David Spiegelhalter reveals the answers to these and many other questions - questions that can only be addressed using statistical science.

Statistics has played a leading role in our scientific understanding of the world for centuries, yet we are all familiar with the way…


Book cover of Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

As a data scientist in the industry, it is very helpful to understand the business context behind the problems that you are solving. In many cases, you are trying to predict behavior—who is likely to buy an item, who is likely to click on a link, who is likely to repay a loan, etc.

This book by Eric Siegel is a great introduction to predictive analytics as used in real-life. It will help you frame data science problems in standard ways. For example, suppose you are asked to score sales leads so that salespeople can prioritize their efforts. How would you do it? The common way to frame this problem is to predict the customer lifetime value (LTV) of every sales lead. Before you can do prediction, you have to be able to do analysis though.

The way you estimate the LTV is to break the problem into three sub-problems:…

By Eric Siegel,

Why should I read it?

1 author picked Predictive Analytics as one of their favorite books, and they share why you should read it.

What is this book about?

"Mesmerizing & fascinating..." -The Seattle Post-Intelligencer

"The Freakonomics of big data." -Stein Kretsinger, founding executive of Advertising.com

Award-winning | Used by over 30 universities | Translated into 9 languages

An introduction for everyone. In this rich, fascinating - surprisingly accessible - introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a "how to" for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques.

Prediction is booming. It reinvents industries and runs the world. Companies, governments, law…


Book cover of Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

It is not enough for a data scientist to be able to analyze data and build ML models. You have to be able to communicate the insights to decision-makers concisely and accurately. This book shows you bad and good visualizations — you’ll be surprised by how often you would have defaulted to the bad way without the guidance provided by this book!

By Claus O. Wilke,

Why should I read it?

1 author picked Fundamentals of Data Visualization as one of their favorite books, and they share why you should read it.

What is this book about?

Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options.

This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke…


Book cover of Jumpstart Snowflake: A Step-by-Step Guide to Modern Cloud Analytics

Valliappa Lakshmanan Author Of Data Science on the Google Cloud Platform: Implementing End-To-End Real-Time Data Pipelines: From Ingest to Machine Learning

From my list on if you want to become a data scientist.

Why am I passionate about this?

I started my career as a research scientist building machine learning algorithms for weather forecasting. Twenty years later, I found myself at a precision agriculture startup creating models that provided guidance to farmers on when to plant, what to plant, etc. So, I am part of the movement from academia to industry. Now, at Google Cloud, my team builds cross-industry solutions and I see firsthand what our customers need in their data science teams. This set of books is what I suggest when a CTO asks how to upskill their workforce, or when a graduate student asks me how to break into the industry.

Valliappa's book list on if you want to become a data scientist

Valliappa Lakshmanan Why did Valliappa love this book?

In industry, your data is very likely to live within a data warehouse such as BigQuery, Redshift, or Snowflake. Therefore, to be an effective data scientist in the industry, you should learn how to use data warehouses effectively. 

Once you learn data warehousing and SQL with any one of these products, it is quite easy to pick up another. So which one do you start with?

You can use Snowflake on all three of the major public clouds. Because it’s a standalone product, it is the most similar to a “traditional” data warehouse and can be picked up easily even if you are not familiar with cloud computing. That makes it a good data warehouse to start with, and is the reason my second book pick is this book on Snowflake.

BigQuery is also available on all three major public clouds, but it works best (and is used most commonly)…

By Dmitry Anoshin, Dmitry Shirokov, Donna Strok

Why should I read it?

1 author picked Jumpstart Snowflake as one of their favorite books, and they share why you should read it.

What is this book about?

Explore the modern market of data analytics platforms and the benefits of using Snowflake computing, the data warehouse built for the cloud.

With the rise of cloud technologies, organizations prefer to deploy their analytics using cloud providers such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform. Cloud vendors are offering modern data platforms for building cloud analytics solutions to collect data and consolidate into single storage solutions that provide insights for business users. The core of any analytics framework is the data warehouse, and previously customers did not have many choices of platform to use.

Snowflake was…


Book cover of People Skills for Analytical Thinkers

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Since data science is, at its core, people helping people make decisions, it is essential that we can establish productive relationships with our stakeholders. This is a skill that needs to be given the same level of effort as we give to coding or statistics. Gilbert’s book is a great resource to help technically oriented people to advance their people skills.

By Gilbert Eijkelenboom,

Why should I read it?

1 author picked People Skills for Analytical Thinkers as one of their favorite books, and they share why you should read it.

What is this book about?

"For the engineer, scientist, or technology professional seeking to communicate better in the business world, this is the book you've been craving your entire career!" ”
— Douglas Laney, Innovation Fellow, West Monroe, and best-selling author of "Infonomics"

Your analytical skills are incredibly valuable. However, rational thinking alone isn’t enough.

Have you ever: Presented an idea, but then no one seemed to care? Explained your analysis, only to leave your colleague confused? Struggled to work with people who are less analytical and more emotional?

In these situations, people skills make the difference, and research shows these skills are becoming increasingly…


Book cover of The Golem: What You Should Know about Science

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

The thing you should know about science is that it’s a human enterprise. As a result, it’s dependent on human factors like social consensus and prejudice. In this series of case studies of famously expensive and difficult-to-replicate experiments probing the limits of scientific understanding from biology to theoretical physics, Collins and Pinch show how scientific knowledge gathering is rarely straightforward because there are always alternative explanations available for the data. Was the phenomenon real or was the experiment set up badly? We can never know for sure, but we decide collectively what we believe. Scientists are experts participating in human culture, they argue, not mysterious clergy issuing declarations of absolute truth.

By Harry M. Collins, Trevor Pinch,

Why should I read it?

1 author picked The Golem as one of their favorite books, and they share why you should read it.

What is this book about?

Harry Collins and Trevor Pinch liken science to the Golem, a creature from Jewish mythology, powerful yet potentially dangerous, a gentle, helpful creature that may yet run amok at any moment. Through a series of intriguing case studies the authors debunk the traditional view that science is the straightforward result of competent theorisation, observation and experimentation. The very well-received first edition generated much debate, reflected in a substantial new Afterword in this second edition, which seeks to place the book in what have become known as 'the science wars'.


Book cover of Competing on Analytics: The New Science of Winning

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

This is a foundational book on analytics and data science as a business function and helped to shape the development of the practice. It provides a view of the discipline through a business lens and avoids deep technical examinations. Though much has changed in the 15 years since it was originally published, it is still essential reading for a leader in the field. No book since has captured as well the competitive differentiation that analytics provides.

By Thomas H. Davenport, Jeanne G. Harris,

Why should I read it?

1 author picked Competing on Analytics as one of their favorite books, and they share why you should read it.

What is this book about?

You have more information at hand about your business environment than ever before. But are you using it to "out-think" your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new…


Book cover of Social Sciences as Sorcery

Aubrey Clayton Author Of Bernoulli's Fallacy: Statistical Illogic and the Crisis of Modern Science

From my list on for data scientists trying to be ethical people.

Why am I passionate about this?

I studied statistics and data science for years before anyone ever suggested to me that these topics might have an ethical dimension, or that my numerical tools were products of human beings with motivations specific to their time and place. I’ve since written about the history and philosophy of mathematical probability and statistics, and I’ve come to understand just how important that historical background is and how critically important it is that the next generation of data scientists understand where these ideas come from and their potential to do harm. I hope anyone who reads these books avoids getting blinkered by the ideas that data = objectivity and that science is morally neutral.

Aubrey's book list on for data scientists trying to be ethical people

Aubrey Clayton Why did Aubrey love this book?

This book is now 50 years old, but its message is as relevant and important now as when it was written. In a series of witty essays that border on rants, Andreski attacks much of social science as fluff obscured by technical jargon and methodology. In particular, he laments the growth of quantitative methods as an attempt to add objectivity to social science and make it appear “harder.” True objectivity is about more than mechanical number-crunching, he says; it’s about a commitment to fairness and resisting the temptations of wishful thinking – a challenge anyone who works with data concerning people and their lives should take seriously.

By Stanislav Andreski,

Why should I read it?

1 author picked Social Sciences as Sorcery as one of their favorite books, and they share why you should read it.

What is this book about?

"Seldom have the social sciences been subject to quite so comprehensive, yet non-partisan, attack. There can be little doubt SOCIAL SCIENCES AS SORCERY is an uncomfortably important and embarassingly comprehensive book." -- Times Literary Supplement "Liberating!" -- Harpers "Andreski has written a new book that is certain to enrage his colleagues ... He documents his charges and spares few of the luminaries of social science in the process." -- TIME Magazine


Book cover of The Black Swan

Neil Pasricha Author Of Two Minute Evenings: A Journal to Wind Down Your Day with Intention

From my list on create happy habits in your life.

Why am I passionate about this?

Hi, I’m Neil. We need to live our tiny, precious lives with intention. I write about failure, resilience, happiness, trust, and gratitude. I’m the New York Times bestselling author of 10 books and journals that have sold over 2,000,000 copies and spent over 200 weeks on bestseller lists, including The Happiness Equation, Two-Minute Mornings, and You Are Awesome. I host the award-winning, ad-free, sponsor-free podcast 3 Books, where I’m on a 22-year quest to uncover the 1000 most formative books in the world. Guests include Brené Brown, Quentin Tarantino, and David Sedaris. I give over 50 keynote speeches a year at places like Harvard, SXSW, and Microsoft.

Neil's book list on create happy habits in your life

Neil Pasricha Why did Neil love this book?

If I were teaching a course on life, this would be a mandatory textbook. Talib defines black swan events as events that 1) are disproportionately huge, 2) cannot be predicted, and 3) are mistakenly explained in retrospect with hindsight and fallacies.

This book helped me leave my corporate job and strike out on my own. Why? To help unroll the canvas of myself and my life, so I was more exposed to black swan events, leading me to write more books and have more unlikely, amazing experiences.

By Nassim Nicholas Taleb,

Why should I read it?

8 authors picked The Black Swan as one of their favorite books, and they share why you should read it.

What is this book about?

The most influential book of the past seventy-five years: a groundbreaking exploration of everything we know about what we don’t know, now with a new section called “On Robustness and Fragility.”

A black swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random, and more predictable, than it was. The astonishing success of Google was a black swan; so was 9/11. For Nassim Nicholas Taleb, black swans underlie almost everything about our world, from the rise of religions…


Book cover of Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools

Naomi R. Ceder Author Of The Quick Python Book

From my list on to level up your Python skills.

Why am I passionate about this?

I’ve been teaching and writing Python code (and managing others while they write Python code) for over 20 years. After all that time Python is still my tool of choice, and many times Python is the key part of how I explore and think about problems. My experience as a teacher also has prompted me to dig in and look for the simplest way of understanding and explaining the elegant way that Python features fit together. 

Naomi's book list on to level up your Python skills

Naomi R. Ceder Why did Naomi love this book?

I like this book not just because it’s a complete guide to the many ins and outs of data cleaning with Python, but also because David lays out the types of problems and the issues behind them. There are always trade-offs in data cleaning and this book lays out those trade-offs better than any other I’ve seen. This is one of the few books that as I go through it, I struggle to think of anything that could have been said better. 

By David Mertz,

Why should I read it?

1 author picked Cleaning Data for Effective Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

Think about your data intelligently and ask the right questions

Key Features Master data cleaning techniques necessary to perform real-world data science and machine learning tasks Spot common problems with dirty data and develop flexible solutions from first principles Test and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description

Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the…


Book cover of The Art of Statistics: How to Learn from Data
Book cover of Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die
Book cover of Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,592

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in data science, data processing, and statistics?

Data Science 24 books
Data Processing 27 books
Statistics 30 books