64 books like Competing on Analytics

By Thomas H. Davenport, Jeanne G. Harris,

Here are 64 books that Competing on Analytics fans have personally recommended if you like Competing on Analytics. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Be Data Literate: The Data Literacy Skills Everyone Needs to Succeed

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Not everybody needs to be a data scientist, but everybody does need to be data literate. Without an intentional focus on evangelism and building a strong data culture in your organization it will be an uphill battle to make meaningful change. This book helps individuals and leaders to understand what data literacy is, and how we can build it like any other skill.

By Jordan Morrow,

Why should I read it?

1 author picked Be Data Literate as one of their favorite books, and they share why you should read it.

What is this book about?

In the fast moving world of the fourth industrial revolution not everyone needs to be a data scientist but everyone should be data literate, with the ability to read, analyze and communicate with data. It is not enough for a business to have the best data if those using it don't understand the right questions to ask or how to use the information generated to make decisions. Be Data Literate is the essential guide to developing the curiosity, creativity and critical thinking necessary to make anyone data literate, without retraining as a data scientist or statistician. With learnings to show…


Book cover of Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Data scientists and analytics specialists are great at building models and algorithms, but often wrap them in a presentation or dashboard that diminishes their value and reduces the likelihood of their work being adopted. This book encourages practitioners to always consider the last mile and to pay as much attention to presentation and aesthetics as we do to the model itself. 

By Brent Dykes,

Why should I read it?

1 author picked Effective Data Storytelling as one of their favorite books, and they share why you should read it.

What is this book about?

Master the art and science of data storytelling-with frameworks and techniques to help you craft compelling stories with data.

The ability to effectively communicate with data is no longer a luxury in today's economy; it is a necessity. Transforming data into visual communication is only one part of the picture. It is equally important to engage your audience with a narrative-to tell a story with the numbers. Effective Data Storytelling will teach you the essential skills necessary to communicate your insights through persuasive and memorable data stories.

Narratives are more powerful than raw statistics, more enduring than pretty charts. When…


Book cover of People Skills for Analytical Thinkers

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Since data science is, at its core, people helping people make decisions, it is essential that we can establish productive relationships with our stakeholders. This is a skill that needs to be given the same level of effort as we give to coding or statistics. Gilbert’s book is a great resource to help technically oriented people to advance their people skills.

By Gilbert Eijkelenboom,

Why should I read it?

1 author picked People Skills for Analytical Thinkers as one of their favorite books, and they share why you should read it.

What is this book about?

"For the engineer, scientist, or technology professional seeking to communicate better in the business world, this is the book you've been craving your entire career!" ”
— Douglas Laney, Innovation Fellow, West Monroe, and best-selling author of "Infonomics"

Your analytical skills are incredibly valuable. However, rational thinking alone isn’t enough.

Have you ever: Presented an idea, but then no one seemed to care? Explained your analysis, only to leave your colleague confused? Struggled to work with people who are less analytical and more emotional?

In these situations, people skills make the difference, and research shows these skills are becoming increasingly…


Book cover of The Practice of Management

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

Management as a skill is typically established and honed by osmosis, mimicry, and corporate crash courses. Data scientists pursuing management roles need to understand management from base principles to create meaningful change and establish productive team conventions. After almost 70 years, Drucker’s book still stands up as a foundational piece of reading.

By Peter F. Drucker,

Why should I read it?

1 author picked The Practice of Management as one of their favorite books, and they share why you should read it.

What is this book about?

A classic since its publication in 1954, The Practice of Management was the first book to look at management as a whole and being a manager as a separate responsibility. The Practice of Management created the discipline of modern management practices. Readable, fundamental, and basic, it remains an essential book for students, aspiring managers, and seasoned professionals.


Book cover of Calling Bullshit: The Art of Skepticism in a Data-Driven World

Gary Smith Author Of Distrust: Big Data, Data-Torturing, and the Assault on Science

From my list on science’s eroding reputation.

Why am I passionate about this?

I am the Fletcher Jones Professor of Economics at Pomona College. I started out as a macroeconomist but, early on, discovered stats and stocks—which have long been fertile fields for data torturing and data mining. My book, Standard Deviations: Flawed Assumptions, Tortured Data, and Other Ways to Lie with Statistics is a compilation of a variety of dubious and misleading statistical practices. More recently, I have written several books on AI, which has a long history of overpromising and underdelivering because it is essentially data mining on steroids. No matter how loudly statisticians shout correlation is not causation, some will not hear.

Gary's book list on science’s eroding reputation

Gary Smith Why did Gary love this book?

The title is provocative but justified because so much of the “evidence” that we are bombarded with daily is bullshit. This is a wonderful compilation of statistical mistakes and misuses that are intended to persuade readers to be skeptical and to show them how to recognize bullshit when they see it.

By Carl T. Bergstrom, Jevin D. West,

Why should I read it?

4 authors picked Calling Bullshit as one of their favorite books, and they share why you should read it.

What is this book about?

Bullshit isn’t what it used to be. Now, two science professors give us the tools to dismantle misinformation and think clearly in a world of fake news and bad data.
 
“A modern classic . . . a straight-talking survival guide to the mean streets of a dying democracy and a global pandemic.”—Wired

Misinformation, disinformation, and fake news abound and it’s increasingly difficult to know what’s true. Our media environment has become hyperpartisan. Science is conducted by press release. Startup culture elevates bullshit to high art. We are fairly well equipped to spot the sort of old-school bullshit that is based…


Book cover of Information Quality: The Potential of Data and Analytics to Generate Knowledge

Ron S. Kenett Author Of The Real Work of Data Science: Turning Data into Information, Better Decisions, and Stronger Organizations

From my list on how numbers turn into information.

Why am I passionate about this?

I was trained as a mathematician but have always been motivated by problem-solving challenges. Statistics and analytics combine mathematical models with statistical thinking. My career has always focused on this combination and, as a statistician, you can apply it in a wide range of domains. The advent of big data and machine learning algorithms has opened up new opportunities for applied statisticians. This perspective complements computer science views on how to address data science. The Real Work of Data Science, covers 18 areas (18 chapters) that need to be pushed forward in order to turning data into information, better decisions, and stronger organizations

Ron's book list on how numbers turn into information

Ron S. Kenett Why did Ron love this book?

A lightly technical introduction to a comprehensive framework defining and evaluating the quality of information generated by statistical analysis. It expands the role of analytics by including dimensions that affect information quality such as data resolution, data integration, operationalization, and generalizability of findings. This wide-angle perspective provides a practical checklist that has been found useful in applications. Multiple case studies enable the reader to connect to his favorite topic, but also learn from other areas.

By Ron S. Kenett, Galit Shmueli,

Why should I read it?

1 author picked Information Quality as one of their favorite books, and they share why you should read it.

What is this book about?

Provides an important framework for data analysts in assessing the quality of data and its potential to provide meaningful insights through analysis Analytics and statistical analysis have become pervasive topics, mainly due to the growing availability of data and analytic tools. Technology, however, fails to deliver insights with added value if the quality of the information it generates is not assured. Information Quality (InfoQ) is a tool developed by the authors to assess the potential of a dataset to achieve a goal of interest, using data analysis. Whether the information quality of a dataset is sufficient is of practical importance…


Book cover of Introduction to Machine Learning with Python: A Guide for Data Scientists

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why did Yuxi love this book?

This book is more advanced than the first book I recommended. It presents ML theoretical and practical aspects step-by-step from the bottom up. Each chapter elaborates at length on a core building block in the ML life cycle. For example, feature engineering, supervised learning, and model evaluation have their own separate chapters, with intuitive discussions of how they work. Most of the concept is taught through the simple yet powerful Python Module Scikit-Learn so it won’t overburden you with heavy programming. This book will be perfect for practitioners with some understanding of statistics and linear algebra.

By Andreas C. Müller, Sarah Guido,

Why should I read it?

1 author picked Introduction to Machine Learning with Python as one of their favorite books, and they share why you should read it.

What is this book about?

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the…


Book cover of Machine Learning For Absolute Beginners: A Plain English Introduction

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why did Yuxi love this book?

This could be the first stop of your brand new machine learning journey. I personally like how the technical concept is translated into plain English – each chapter starts with a high-level overview of a ML algorithm or methodology, concise and clear, followed by lots of visual examples and real world scenarios. I can guarantee you won’t get lost halfway. The book focuses on getting you introduced to ML with minimal math. But if you want to grasp some more of math, the next book I recommend is waiting for you. 

By Oliver Theobald,

Why should I read it?

1 author picked Machine Learning For Absolute Beginners as one of their favorite books, and they share why you should read it.

What is this book about?

NOTICE: To buy the newest edition of this book (2021), please search "Machine Learning Absolute Beginners Third Edition" on Amazon. The product page you are currently viewing is for the 2nd Edition (2017) of this book.

Featured by Tableau as the first of "7 Books About Machine Learning for Beginners."

Ready to spin up a virtual GPU instance and smash through petabytes of data? Want to add 'Machine Learning' to your LinkedIn profile?

Well, hold on there...

Before you embark on your epic journey, there are some high-level theory and statistical principles to weave through first.
But rather than spend…


Book cover of Rage Inside the Machine: The Prejudice of Algorithms, and How to Stop the Internet Making Bigots of Us All

Peter J. Bentley Author Of Artificial Intelligence and Robotics: Ten Short Lessons

From my list on no hype and no nonsense artificial intelligence.

Why am I passionate about this?

I’ve been a geeky kid all my life. (I don’t think I’ve quite grown up yet.) Born in the 1970s, my childhood was a wonderful playground of building robots and software. I was awarded one of the early degrees in AI, and a PhD in genetic algorithms. I’ve since spent 25 years exploring how to make computers think, build, invent, compose… and I’ve also spent 20 years writing popular science books. I’m lucky enough to be a Professor in one of the world’s best universities for Computer Science and Machine Learning: UCL, and I guess I’ve written two or three hundred scientific papers over the years. I still think I know nothing at all about real or artificial intelligence, but then does anyone?

Peter's book list on no hype and no nonsense artificial intelligence

Peter J. Bentley Why did Peter love this book?

OK, I’m biased here because Rob is an old friend of mine. We first met at academic conferences and had several heated debates (arguments). But after spending a little time together at a workshop we realised each probably knew what they were talking about after all. Robert Elliott Smith, I should make clear it's not the Rob Smith who writes about “Artificial Superintelligence”. Those books definitely do not make this list.

Our Rob is a coherent, grounded scientist with bags of real-world experience, and he brings his knowledge to this title with gusto, telling us about how AI is affecting our lives in ways you never thought possible – and often not in a good way. If you want to understand what can go wrong with AI and what we should be doing to stop it, don’t read about singularities or other such nonsense, read this.

By Robert Elliott Smith,

Why should I read it?

1 author picked Rage Inside the Machine as one of their favorite books, and they share why you should read it.

What is this book about?

Shortlisted for the 2020 Business Book Awards

We live in a world increasingly ruled by technology; we seem as governed by technology as we do by laws and regulations. Frighteningly often, the influence of technology in and on our lives goes completely unchallenged by citizens and governments. We comfort ourselves with the soothing refrain that technology has no morals and can display no prejudice, and it's only the users of technology who distort certain aspects of it.

But is this statement actually true? Dr Robert Smith thinks it is dangerously untrue in the modern era.

Having worked in the field…


Book cover of Advanced Analytics with Spark: Patterns for Learning from Data at Scale

Tomasz Lelek Author Of Software Mistakes and Tradeoffs: How to make good programming decisions

From my list on big data processing ecosystem.

Why am I passionate about this?

I am motivated by working on products that many people use. I've been a part of companies that deliver products impacting millions of people. To achieve it, I am working in the Big Data ecosystem and striving to simplify it by contributing to Dremio's Data LakeHouse solution. I worked on projects using Spark, HDFS, Cassandra, and Kafka technologies. I have been working in the software engineering industry for ten years now, and I've tried to share my experience and lessons learned in the Software Mistakes and Tradeoffs book, hoping that it will allow current and the next generation of engineers to create better software, leading to more happy users.

Tomasz's book list on big data processing ecosystem

Tomasz Lelek Why did Tomasz love this book?

Apache Spark has a very high point of entry for newcomers to the Big Data ecosystem.

However, it is a key tool that almost everyone is using for running distributed processing. I recommend everyone to read this book before delving into production solutions based on Apache Spark.

This book will allow you to alleviate many spark problems, such as serialization, memory utilization, and parallelization of processing.

By Sandy Ryza, Uri Laserson, Sean Owen , Josh Wills

Why should I read it?

1 author picked Advanced Analytics with Spark as one of their favorite books, and they share why you should read it.

What is this book about?

In this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques-classification, collaborative filtering, and anomaly detection among others-to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find these patterns useful for…


Book cover of Be Data Literate: The Data Literacy Skills Everyone Needs to Succeed
Book cover of Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals
Book cover of People Skills for Analytical Thinkers

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,355

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in data mining, data science, and statistics?

Data Mining 13 books
Data Science 24 books
Statistics 30 books