The most recommended machine learning books

Who picked these books? Meet our 55 experts.

55 authors created a book list connected to machine learning, and here are their favorite machine learning books.
When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

What type of machine learning book?

Loading...
Loading...

Book cover of Linear Algebra: Theory, Intuition, Code

Ivan Savov Author Of No Bullshit Guide to Linear Algebra

From my list on textbooks for learning linear algebra.

Why am I passionate about this?

I've been teaching math and physics for more than 20 years as a private tutor. During this time, I experimented with different ways to explain concepts to make them easy to understand. I'm a big fan of using concept maps to show the connections between concepts and teaching topics in an integrated manner, including prerequisites and applications. While researching the material for my book, I read dozens of linear algebra textbooks and watched hundreds of videos, looking for the best ways to explain complicated concepts intuitively. I've tried to distill the essential ideas of linear algebra in my book and prepared this list to highlight the books I learned from.

Ivan's book list on textbooks for learning linear algebra

Ivan Savov Why did Ivan love this book?

I like Prof. Cohen's book because it includes computational examples based on Python and NumPy to illustrate each concept. This is the way I like to think about linear algebra concepts.

Yes, it's important to understand the formulas and theoretical ideas, but applying linear algebra operations in the real world will always involve some computational platform and not pen and paper. This is the only book I know that shows readers the practical computational linear algebra in parallel with the theory.

The author provides computational notebooks for each chapter on GitHub, which makes it easy to explore all the material from a code-first computational perspective.

By Mike X Cohen,

Why should I read it?

1 author picked Linear Algebra as one of their favorite books, and they share why you should read it.

What is this book about?

Linear algebra is perhaps the most important branch of mathematics for computational sciences, including machine learning, AI, data science, statistics, simulations, computer graphics, multivariate analyses, matrix decompositions, signal processing, and so on.
The way linear algebra is presented in traditional textbooks is different from how professionals use linear algebra in computers to solve real-world applications in machine learning, data science, statistics, and signal processing. For example, the "determinant" of a matrix is important for linear algebra theory, but should you actually use the determinant in practical applications? The answer may surprise you!
If you are interested in learning the mathematical…


Book cover of A Whole New Mind: Why Right-Brainers Will Rule the Future

Craig Detweiler Author Of Honest Creativity: The Foundations of Boundless, Good, and Inspired Innovation

From my list on creativity and deepening your spirituality.

Why am I passionate about this?

I blame my mother. She took us to the public library every week and let us check out as many books as we could carry. Consequently, reading was a joy rather than a burden. The writing came after I got over my false assumptions about English Lit and Modern Poetry. As a screenwriter, I craft silly stories to make audiences laugh. That’s why I watch movies after an exhausting week. As an author, I gravitate towards non-fiction–trying to reconcile my artistry with my faith. I’ve written about movies, music, video games, technology, and art–with an eye toward lifting our spirits and comforting our aching souls.

Craig's book list on creativity and deepening your spirituality

Craig Detweiler Why did Craig love this book?

I get frustrated by organizations and systems that are so devoted to metrics that they miss the creative opportunities at hand.

Daniel Pink’s A Whole New Mind flips the script on the AI-driven world we’re inheriting, insisting that the right-brained approach to creativity will unlock a brighter future for us all. I’ve found that his focus on story and design moves audiences far more than spreadsheets and PowerPoints.

Pink reminds us why empathy and playfulness are the kinds of superpowers we must rediscover amid so much machine learning.

By Daniel H. Pink,

Why should I read it?

4 authors picked A Whole New Mind as one of their favorite books, and they share why you should read it.

What is this book about?

This is a book that you have to read. A Whole New Mind is a groundbreaking look at how we should live our lives in a world turned upside down by rising affluence, the outsourcing of good jobs abroad, and the computerization of our lives a world fast shifting from the Information Age to the Conceptual Age. Lawyers. Accountants. Radiologists. Software engineers. That's what our parents encouraged us to be when we grew up. But Mum and Dad were wrong. The future belongs to a very different kind of person - a person with a very different kind of mind.…


Book cover of Dive into Deep Learning

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

This is the practical book that best accompanies my book (which is more about the underlying ideas.)

If you want a book that will show you how deep learning systems are built in practice, then this is the best place to start. It’s full of code snippets that translate between theory and building real systems.

By Aston Zhang, Zachary C. Lipton, Mu Li , Alexander J. Smola

Why should I read it?

1 author picked Dive into Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

Deep learning has revolutionized pattern recognition, introducing tools that power a wide range of technologies in such diverse fields as computer vision, natural language processing, and automatic speech recognition. Applying deep learning requires you to simultaneously understand how to cast a problem, the basic mathematics of modeling, the algorithms for fitting your models to data, and the engineering techniques to implement it all. This book is a comprehensive resource that makes deep learning approachable, while still providing sufficient technical depth to enable engineers, scientists, and students to use deep learning in their own work. No previous background in machine learning…


Book cover of The Shortcut: Why Intelligent Machines Do Not Think Like Us

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

This is a popular science book, so a little different from the others on this list. It is a beautifully written book that is accessible to people who don’t know much about AI but is simultaneously thought-provoking for experts.

It contains probably the best discussion of "intelligence" that I've read, interesting insights into how Google and other tech giants came to develop their machine learning strategy, and a fascinating chapter that views recommendation engines and their users as parts of a single intelligent organism. It's concise and easy to read.

I've read many popular AI books, which are highly variable in quality, and this criminally underappreciated work is the best by miles. 

By Nello Cristianini,

Why should I read it?

1 author picked The Shortcut as one of their favorite books, and they share why you should read it.

What is this book about?

- The author is one of the most influential AI reseachers of recent decades.

- Written in an accessible language, the book provides a probing account of AI today and proposes a new narrative to connect and make sense of events that happened in the recent tumultuous past and enable us to think soberly about the road ahead.

- The book is divided into ten carefully crafted and easily-digestible chapters, each grapples with an important question for AI, ranging from the scientific concepts that underpin the technology to wider implications for society, using real examples wherever possible.


Book cover of Architects of Intelligence: The truth about AI from the people building it

Paul Thagard Author Of Bots and Beasts: What Makes Machines, Animals, and People Smart?

From my list on intelligence in humans, animals, and machines.

Why am I passionate about this?

I became fascinated by the highest achievements of human intelligence while a graduate student in philosophy working on the discovery and justification of scientific theories. Shortly after I got my PhD, I started working with cognitive psychologists who gave me an appreciation for empirical studies of intelligent thinking. Psychology led me to computational modeling of intelligence and I learned to build my own models. Much later a graduate student got me interested in questions about intelligence in non-human animals. After teaching a course on intelligence in machines, humans, and other animals, I decided to write a book that provides a systematic comparison: Bots and Beasts.  

Paul's book list on intelligence in humans, animals, and machines

Paul Thagard Why did Paul love this book?

This book provides a good introduction to the current state of machine intelligence through interviews with many leading practitioners including Geoffrey Hinton, Yann LeCun, Stuart Russell, and Demis Hassabis (DeepMind). You will get a sense of both of AI’s recent accomplishments and how far it falls short of full human intelligence.

By Martin Ford,

Why should I read it?

1 author picked Architects of Intelligence as one of their favorite books, and they share why you should read it.

What is this book about?

Financial Times Best Books of the Year 2018

TechRepublic Top Books Every Techie Should Read

Book Description

How will AI evolve and what major innovations are on the horizon? What will its impact be on the job market, economy, and society? What is the path toward human-level machine intelligence? What should we be concerned about as artificial intelligence advances?

Architects of Intelligence contains a series of in-depth, one-to-one interviews where New York Times bestselling author, Martin Ford, uncovers the truth behind these questions from some of the brightest minds in the Artificial Intelligence community.

Martin has wide-ranging conversations with twenty-three…


Book cover of Introduction to Machine Learning with Python: A Guide for Data Scientists

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why did Yuxi love this book?

This book is more advanced than the first book I recommended. It presents ML theoretical and practical aspects step-by-step from the bottom up. Each chapter elaborates at length on a core building block in the ML life cycle. For example, feature engineering, supervised learning, and model evaluation have their own separate chapters, with intuitive discussions of how they work. Most of the concept is taught through the simple yet powerful Python Module Scikit-Learn so it won’t overburden you with heavy programming. This book will be perfect for practitioners with some understanding of statistics and linear algebra.

By Andreas C. Müller, Sarah Guido,

Why should I read it?

1 author picked Introduction to Machine Learning with Python as one of their favorite books, and they share why you should read it.

What is this book about?

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the…


Book cover of Artificial Intelligence: A Modern Approach

Martin Musiol Author Of Generative AI: Navigating the Course to the Artificial General Intelligence Future

From my list on future-proof yourself for the AI era.

Why am I passionate about this?

My passion for generative AI first ignited in 2016 when I spoke about it at a conference, and ever since then, I can’t stop! I've created an online course, a newsletter and even wrote a book to spread knowledge on this groundbreaking technology. As an instructor, I empower others to explore the boundless potential of generative AI applications. Day in day out, I assist clients in crafting their own generative AI solutions, tailoring them to their unique needs.

Martin's book list on future-proof yourself for the AI era

Martin Musiol Why did Martin love this book?

I have a deep appreciation for Stuart Russell's book because it brilliantly balances theoretical foundations with practical applications in AI. This book is not just a textbook; it’s a comprehensive guide that covers everything from problem-solving and knowledge representation to machine learning and ethics.

Russell's clear explanations and engaging examples make complex concepts accessible, which resonates with my own passion for demystifying AI for readers. I recommend it to anyone interested in understanding AI's potential and challenges, as it equips you with the knowledge to navigate this rapidly evolving field responsibly and thoughtfully.

Book cover of Artifictional Intelligence: Against Humanity's Surrender to Computers

Peter J. Bentley Author Of Artificial Intelligence and Robotics: Ten Short Lessons

From my list on no hype and no nonsense artificial intelligence.

Why am I passionate about this?

I’ve been a geeky kid all my life. (I don’t think I’ve quite grown up yet.) Born in the 1970s, my childhood was a wonderful playground of building robots and software. I was awarded one of the early degrees in AI, and a PhD in genetic algorithms. I’ve since spent 25 years exploring how to make computers think, build, invent, compose… and I’ve also spent 20 years writing popular science books. I’m lucky enough to be a Professor in one of the world’s best universities for Computer Science and Machine Learning: UCL, and I guess I’ve written two or three hundred scientific papers over the years. I still think I know nothing at all about real or artificial intelligence, but then does anyone?

Peter's book list on no hype and no nonsense artificial intelligence

Peter J. Bentley Why did Peter love this book?

I’ve not met Harry, but he seems to have a logical and sensible head on his shoulders. His writing is considered and grounded, which is exactly what you need when discussing the hype that forever seems to surround AI. This book is another look at this topic and finds yet more ways to explain to readers the difference between human intelligence and our algorithmic attempts at intelligence – which are frequently pretty stupid.

By Harry Collins,

Why should I read it?

1 author picked Artifictional Intelligence as one of their favorite books, and they share why you should read it.

What is this book about?

Recent startling successes in machine intelligence using a technique called 'deep learning' seem to blur the line between human and machine as never before. Are computers on the cusp of becoming so intelligent that they will render humans obsolete? Harry Collins argues we are getting ahead of ourselves, caught up in images of a fantastical future dreamt up in fictional portrayals. The greater present danger is that we lose sight of the very real limitations of artificial intelligence and readily enslave ourselves to stupid computers: the 'Surrender'.

By dissecting the intricacies of language use and meaning, Collins shows how far…


Book cover of Human + Machine: Reimagining Work in the Age of AI

Steve Finlay Author Of Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies

From my list on machine learning for managers and business leaders.

Why am I passionate about this?

I have worked in the field of machine learning and predictive analytics for many years. Having started out as a technical specialist, I have become increasingly interested in the legal, ethical, and social aspects of these subjects. This is because it is these “soft issues” that often determine how successful these technologies are in practice and if they are viewed as a force for good or evil in wider society. This has led me to write several books focusing on the practical and cultural aspects of these subjects and how best to apply them for the benefit of business, individuals, and wider society.

Steve's book list on machine learning for managers and business leaders

Steve Finlay Why did Steve love this book?

Many writers have discussed the dangers that artificial intelligence and machine learning represent to our livelihoods, and how clever computers and autonomous robots will supplant us all in the workplace. What I like about this book is that it provides an alternative, and very optimistic, view of how these new technologies are being deployed. The authors present a future based on a partnership, in which artificial intelligence-based tools work in tandem with human workers, enhancing what individuals can do in the workplace rather than replacing them.

By Paul R. Daugherty, H. James Wilson,

Why should I read it?

1 author picked Human + Machine as one of their favorite books, and they share why you should read it.

What is this book about?

AI is radically transforming business. Are you ready?

Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now--in software that senses what we need, supply chains that "think" in real time, and robots that respond to changes in their environment. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on?

In Human + Machine, Accenture leaders Paul R. Daugherty and H. James (Jim) Wilson show…


Book cover of Understanding Deep Learning

Ron Kneusel Author Of How AI Works: From Sorcery to Science

From my list on the background and foundation of AI.

Why am I passionate about this?

As a child of the microcomputer revolution in the late 1970s, I’ve always been fascinated by the concept of a general-purpose machine that I could control. The deep learning revolution of 2010 or so, followed most recently by the advent of large language models like ChatGPT, has completely altered the landscape. It is now difficult to interpret the behavior of these systems in a way that doesn’t argue for intelligence of some kind. I’m passionate about AI because, decades after the initial heady claims made in the 1950s, AI has reached a point where the lofty promise is genuinely beginning to be kept. And we’re just getting started.

Ron's book list on the background and foundation of AI

Ron Kneusel Why did Ron love this book?

Goodfellow’s Deep Learning is a must in the field because it was the first. Prince’s new book is an essential follow-up to be up-to-date with the latest model types, including diffusion models (think Stable Diffusion or DALL-E), transformers (the heart of large language models), graph networks (reasoning over relationships), and reinforcement learning.

The math level is similar to what you’ll find in Goodfellow’s book.

By Simon J.D. Prince,

Why should I read it?

1 author picked Understanding Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice.

Deep learning is a fast-moving field with sweeping relevance in today’s increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics along with recent advances and cutting-edge concepts. Many deep learning texts are crowded with technical details that obscure fundamentals, but Simon Prince ruthlessly curates only the most important ideas to provide a high density of critical information in an intuitive and digestible form. From machine learning basics to advanced…


Book cover of Linear Algebra: Theory, Intuition, Code
Book cover of A Whole New Mind: Why Right-Brainers Will Rule the Future
Book cover of Dive into Deep Learning

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,593

readers submitted
so far, will you?