Who am I?
I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.
Jakub's book list on applied deep learning
Discover why each book is one of Jakub's favorite books.
Why did Jakub love this book?
While technically not about deep learning, this book is fantastic for those interested in pursuing applied or practical machine learning problems. While the central thesis of a topic can be reduced to “Frequently, models are valuable simply by reducing uncertainty,” it is definitely worth a read as there’s a lot of deep thinking in this book!
1 author picked How to Measure Anything as one of their favorite books, and they share why you should read it.
Now updated with new measurement methods and new examples, How to Measure Anything shows managers how to inform themselves in order to make less risky, more profitable business decisions This insightful and eloquent book will show you how to measure those things in your own business, government agency or other organization that, until now, you may have considered "immeasurable," including customer satisfaction, organizational flexibility, technology risk, and technology ROI. * Adds new measurement methods, showing how they can be applied to a variety of areas such as risk management and customer satisfaction * Simplifies overall content while still making the…
- Coming soon!