61 books like Advanced Methods and Deep Learning in Computer Vision

By E.R. Davies (editor), Matthew Turk (editor),

Here are 61 books that Advanced Methods and Deep Learning in Computer Vision fans have personally recommended if you like Advanced Methods and Deep Learning in Computer Vision. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Vision: A Computational Investigation into the Human Representation and Processing of Visual Information

Mark S. Nixon Author Of Feature Extraction and Image Processing for Computer Vision

From my list on computer vision from a veteran professor.

Why am I passionate about this?

It’s been fantastic to work in computer vision, especially when it is used to build biometric systems. I and my 80 odd PhD students have pioneered systems that recognise people by the way they walk, by their ears, and many other new things too. To build the systems, we needed computer vision techniques and architectures, both of which work with complex real-world imagery. That’s what computer vision gives you: a capability to ‘see’ using a computer. I think we can still go a lot further: to give blind people sight, to enable better invasive surgery, to autonomise more of our industrial society, and to give us capabilities we never knew we’d have.

Mark's book list on computer vision from a veteran professor

Mark S. Nixon Why did Mark love this book?

David Marr shaped the field of computer vision in its early days. His seminal book laid the structure for interpreting images and one which is still largely followed. He popularised notions of the primal sketch and his work on edge detection led to one of the most sophisticated approaches. His work and influence continue to endure despite his early death: we missed and miss him a lot.

By David Marr,

Why should I read it?

1 author picked Vision as one of their favorite books, and they share why you should read it.

What is this book about?

Available again, an influential book that offers a framework for understanding visual perception and considers fundamental questions about the brain and its functions.

David Marr's posthumously published Vision (1982) influenced a generation of brain and cognitive scientists, inspiring many to enter the field. In Vision, Marr describes a general framework for understanding visual perception and touches on broader questions about how the brain and its functions can be studied and understood. Researchers from a range of brain and cognitive sciences have long valued Marr's creativity, intellectual power, and ability to integrate insights and data from neuroscience, psychology, and computation. This…


Book cover of Multiple View Geometry in Computer Vision

Mark S. Nixon Author Of Feature Extraction and Image Processing for Computer Vision

From my list on computer vision from a veteran professor.

Why am I passionate about this?

It’s been fantastic to work in computer vision, especially when it is used to build biometric systems. I and my 80 odd PhD students have pioneered systems that recognise people by the way they walk, by their ears, and many other new things too. To build the systems, we needed computer vision techniques and architectures, both of which work with complex real-world imagery. That’s what computer vision gives you: a capability to ‘see’ using a computer. I think we can still go a lot further: to give blind people sight, to enable better invasive surgery, to autonomise more of our industrial society, and to give us capabilities we never knew we’d have.

Mark's book list on computer vision from a veteran professor

Mark S. Nixon Why did Mark love this book?

Adding perspective puzzled artists in the fourteenth century; analysing perspective is integral to applied computer vision. You might have seen Hawkeye in action: the principles by which it works are explained superbly within this book. It was the first of its kind to set this analysis in a lucid and compelling format. Richard and Andrew’s text will be on researchers’ bookshelves for many years for its bedrock description of how we analyse three-dimensional scenes.

By Richard Hartley, Andrew Zisserman,

Why should I read it?

1 author picked Multiple View Geometry in Computer Vision as one of their favorite books, and they share why you should read it.

What is this book about?

A basic problem in computer vision is to understand the structure of a real world scene given several images of it. Techniques for solving this problem are taken from projective geometry and photogrammetry. Here, the authors cover the geometric principles and their algebraic representation in terms of camera projection matrices, the fundamental matrix and the trifocal tensor. The theory and methods of computation of these entities are discussed with real examples, as is their use in the reconstruction of scenes from multiple images. The new edition features an extended introduction covering the key ideas in the book (which itself has…


Book cover of Computer Vision: Models, Learning, and Inference

Mark S. Nixon Author Of Feature Extraction and Image Processing for Computer Vision

From my list on computer vision from a veteran professor.

Why am I passionate about this?

It’s been fantastic to work in computer vision, especially when it is used to build biometric systems. I and my 80 odd PhD students have pioneered systems that recognise people by the way they walk, by their ears, and many other new things too. To build the systems, we needed computer vision techniques and architectures, both of which work with complex real-world imagery. That’s what computer vision gives you: a capability to ‘see’ using a computer. I think we can still go a lot further: to give blind people sight, to enable better invasive surgery, to autonomise more of our industrial society, and to give us capabilities we never knew we’d have.

Mark's book list on computer vision from a veteran professor

Mark S. Nixon Why did Mark love this book?

This fine book is about learning the relationships between what is seen in an image, and what is known about the world. It’s a counterpart to our book on feature extraction and it shows you what can be achieved with the features. It’s not for those who shy from maths, as is the case for all of the books here. So that you can build the techniques, Simon’s book also includes a wide variety of algorithms to help you on your way.

By Simon J.D. Prince,

Why should I read it?

1 author picked Computer Vision as one of their favorite books, and they share why you should read it.

What is this book about?

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build…


Book cover of Computer Vision: Algorithms and Applications

Mark S. Nixon Author Of Feature Extraction and Image Processing for Computer Vision

From my list on computer vision from a veteran professor.

Why am I passionate about this?

It’s been fantastic to work in computer vision, especially when it is used to build biometric systems. I and my 80 odd PhD students have pioneered systems that recognise people by the way they walk, by their ears, and many other new things too. To build the systems, we needed computer vision techniques and architectures, both of which work with complex real-world imagery. That’s what computer vision gives you: a capability to ‘see’ using a computer. I think we can still go a lot further: to give blind people sight, to enable better invasive surgery, to autonomise more of our industrial society, and to give us capabilities we never knew we’d have.

Mark's book list on computer vision from a veteran professor

Mark S. Nixon Why did Mark love this book?

Richard’s authoritative leading textbook excellently describes the whole field of computer vision. It starts with the sensor, moves to image formation followed by feature extraction and grouping, and then by vision analysis. It’s pragmatic too, with excellent descriptions of applications. And there is a ton of support material. This is a mega textbook describing the whole field of computer vision.

By Richard Szeliski,

Why should I read it?

1 author picked Computer Vision as one of their favorite books, and they share why you should read it.

What is this book about?

Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.

More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are…


Book cover of Pattern Recognition and Machine Learning

Martin Musiol Author Of Generative AI: Navigating the Course to the Artificial General Intelligence Future

From my list on future-proof yourself for the AI era.

Why am I passionate about this?

My passion for generative AI first ignited in 2016 when I spoke about it at a conference, and ever since then, I can’t stop! I've created an online course, a newsletter and even wrote a book to spread knowledge on this groundbreaking technology. As an instructor, I empower others to explore the boundless potential of generative AI applications. Day in day out, I assist clients in crafting their own generative AI solutions, tailoring them to their unique needs.

Martin's book list on future-proof yourself for the AI era

Martin Musiol Why did Martin love this book?

Bishop’s book laid the mathematical groundwork for me, making it a solid foundation for anyone venturing into Generative AI.

I love how it covers Bayesian inference, graphical models, and machine learning fundamentals in a clear, approachable way. I also think, in my personal opinion, that reading my book after this one would be a natural progression to understand where AI is heading, building on the core concepts that Bishop established. 


By Christopher M. Bishop,

Why should I read it?

1 author picked Pattern Recognition and Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models…


Book cover of Dive into Deep Learning

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

This is the practical book that best accompanies my book (which is more about the underlying ideas.)

If you want a book that will show you how deep learning systems are built in practice, then this is the best place to start. It’s full of code snippets that translate between theory and building real systems.

By Aston Zhang, Zachary C. Lipton, Mu Li , Alexander J. Smola

Why should I read it?

1 author picked Dive into Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

Deep learning has revolutionized pattern recognition, introducing tools that power a wide range of technologies in such diverse fields as computer vision, natural language processing, and automatic speech recognition. Applying deep learning requires you to simultaneously understand how to cast a problem, the basic mathematics of modeling, the algorithms for fitting your models to data, and the engineering techniques to implement it all. This book is a comprehensive resource that makes deep learning approachable, while still providing sufficient technical depth to enable engineers, scientists, and students to use deep learning in their own work. No previous background in machine learning…


Book cover of Deep Learning

Martin Musiol Author Of Generative AI: Navigating the Course to the Artificial General Intelligence Future

From my list on future-proof yourself for the AI era.

Why am I passionate about this?

My passion for generative AI first ignited in 2016 when I spoke about it at a conference, and ever since then, I can’t stop! I've created an online course, a newsletter and even wrote a book to spread knowledge on this groundbreaking technology. As an instructor, I empower others to explore the boundless potential of generative AI applications. Day in day out, I assist clients in crafting their own generative AI solutions, tailoring them to their unique needs.

Martin's book list on future-proof yourself for the AI era

Martin Musiol Why did Martin love this book?

I truly believe that this is the book that brought my generation of AI experts into the fold. Despite having studied AI and ML, this book took me by the hand and grounded me in the fundamentals. I love the fact that it covers everything from mathematical basics to industry-level techniques.

Written by the OGs of deep learning, it's an absolute must-read for anyone serious about the field. Highly recommend for students and engineers alike.

By Ian Goodfellow, Yoshua Bengio, Aaron Courville

Why should I read it?

4 authors picked Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

“Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.”
—Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all…


Book cover of Foundations of Deep Reinforcement Learning: Theory and Practice in Python

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

Of course, this is not the obvious book to recommend for reinforcement learning, but if you are a beginner, then it’s a quick and easy place to start. It’s compact and gets straight into the main algorithms.

It has a good balance between theory and code and will get you up and running quickly.

By Laura Graesser, Wah Loon Keng,

Why should I read it?

1 author picked Foundations of Deep Reinforcement Learning as one of their favorite books, and they share why you should read it.

What is this book about?

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games-such as Go, Atari games, and DotA 2-to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM…


Book cover of Deep Learning with Python

Jakub Langr Author Of GANs in Action: Deep Learning with Generative Adversarial Networks

From my list on applied deep learning.

Why am I passionate about this?

I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.

Jakub's book list on applied deep learning

Jakub Langr Why did Jakub love this book?

This is a fantastic book to get you started. It is written by the author of a leading deep learning framework Keras, which makes even Tensorflow very easy to use. Chollet is a true leader of the deep learning craft and the Manning team always does an excellent job of forcing authors to make the subject matter accessible. Highly recommended!

By Francois Chollet,

Why should I read it?

2 authors picked Deep Learning with Python as one of their favorite books, and they share why you should read it.

What is this book about?

"The first edition of Deep Learning with Python is one of the best books on the subject. The second edition made it even better." - Todd Cook

The bestseller revised! Deep Learning with Python, Second Edition is a comprehensive introduction to the field of deep learning using Python and the powerful Keras library. Written by Google AI researcher Francois Chollet, the creator of Keras, this revised edition has been updated with new chapters, new tools, and cutting-edge techniques drawn from the latest research. You'll build your understanding through practical examples and intuitive explanations that make the complexities of deep learning…


Book cover of Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems

Valliappa Lakshmanan Author Of Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops

From my list on to become a machine learning engineer.

Why am I passionate about this?

I have been building real-time, production machine learning models for over 20 years. My book, and my book recommendations, are informed by that experience. I have a lot of empathy for people who are new to machine learning because I’ve taught courses on the topic. I founded the Advanced Solutions Lab at Google where we helped data scientists working for Google Cloud customers (who already knew ML) become ML engineers capable of building reliable ML models. The first two are the books I’d recommend today to newcomers and the last three to folks attending the ASL. 

Valliappa's book list on to become a machine learning engineer

Valliappa Lakshmanan Why did Valliappa love this book?

This recommendation is a bit of a cheat — I’m not recommending this exact book, but one of the books in the series that this book is part of.

Once you have the first two books under your belt, you’ll know how to solve ML problems. But you will keep reinventing the wheel. What you need next is a book on common “ML tricks” — best practices and common techniques when doing ML in production.

The problem is that these tricks are specific to the type of data that you will be processing. If you are going to be processing images or time series, read the corresponding books in the same series instead.

By Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta

Why should I read it?

1 author picked Practical Natural Language Processing as one of their favorite books, and they share why you should read it.

What is this book about?

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey.

Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You'll learn how to…


Book cover of Vision: A Computational Investigation into the Human Representation and Processing of Visual Information
Book cover of Multiple View Geometry in Computer Vision
Book cover of Computer Vision: Models, Learning, and Inference

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,188

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in machine learning, computer vision, and deep learning?

Machine Learning 53 books
Computer Vision 9 books
Deep Learning 20 books