Fans pick 78 books like Foundations of Deep Reinforcement Learning

By Laura Graesser, Wah Loon Keng,

Here are 78 books that Foundations of Deep Reinforcement Learning fans have personally recommended if you like Foundations of Deep Reinforcement Learning. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Information Theory, Inference and Learning Algorithms

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

The best parts of this book really represent a gold standard in pedagogical clarity.

Although it’s now twenty years old, there is still much to learn from this rather unconventional book that covers the boundary between machine learning, information theory, and Bayesian methods. There are also odd tangents and curiosities, some of which work better than others but are never dull.

Just writing this review makes me want to go back to it and squeeze more out of it.

By David JC MacKay,

Why should I read it?

2 authors picked Information Theory, Inference and Learning Algorithms as one of their favorite books, and they share why you should read it.

What is this book about?

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo…


Book cover of Probabilistic Machine Learning: An Introduction

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

My knees tremble and my heart quakes when I think of how much work must have gone into these two companion volumes. Collectively, they are more than four times the length of my book, covering the whole of machine learning.

It is an essential encyclopedic resource that should be on the desk of anyone serious about machine learning.

By Kevin P. Murphy,

Why should I read it?

1 author picked Probabilistic Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory.

This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.

Probabilistic Machine Learning grew out of…


Book cover of Dive into Deep Learning

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

This is the practical book that best accompanies my book (which is more about the underlying ideas.)

If you want a book that will show you how deep learning systems are built in practice, then this is the best place to start. It’s full of code snippets that translate between theory and building real systems.

By Aston Zhang, Zachary C. Lipton, Mu Li , Alexander J. Smola

Why should I read it?

1 author picked Dive into Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

Deep learning has revolutionized pattern recognition, introducing tools that power a wide range of technologies in such diverse fields as computer vision, natural language processing, and automatic speech recognition. Applying deep learning requires you to simultaneously understand how to cast a problem, the basic mathematics of modeling, the algorithms for fitting your models to data, and the engineering techniques to implement it all. This book is a comprehensive resource that makes deep learning approachable, while still providing sufficient technical depth to enable engineers, scientists, and students to use deep learning in their own work. No previous background in machine learning…


Book cover of The Shortcut: Why Intelligent Machines Do Not Think Like Us

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Why am I passionate about this?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

This is a popular science book, so a little different from the others on this list. It is a beautifully written book that is accessible to people who don’t know much about AI but is simultaneously thought-provoking for experts.

It contains probably the best discussion of "intelligence" that I've read, interesting insights into how Google and other tech giants came to develop their machine learning strategy, and a fascinating chapter that views recommendation engines and their users as parts of a single intelligent organism. It's concise and easy to read.

I've read many popular AI books, which are highly variable in quality, and this criminally underappreciated work is the best by miles. 

By Nello Cristianini,

Why should I read it?

1 author picked The Shortcut as one of their favorite books, and they share why you should read it.

What is this book about?

- The author is one of the most influential AI reseachers of recent decades.

- Written in an accessible language, the book provides a probing account of AI today and proposes a new narrative to connect and make sense of events that happened in the recent tumultuous past and enable us to think soberly about the road ahead.

- The book is divided into ten carefully crafted and easily-digestible chapters, each grapples with an important question for AI, ranging from the scientific concepts that underpin the technology to wider implications for society, using real examples wherever possible.


Book cover of Understanding Deep Learning

Ron Kneusel Author Of How AI Works: From Sorcery to Science

From my list on the background and foundation of AI.

Why am I passionate about this?

As a child of the microcomputer revolution in the late 1970s, I’ve always been fascinated by the concept of a general-purpose machine that I could control. The deep learning revolution of 2010 or so, followed most recently by the advent of large language models like ChatGPT, has completely altered the landscape. It is now difficult to interpret the behavior of these systems in a way that doesn’t argue for intelligence of some kind. I’m passionate about AI because, decades after the initial heady claims made in the 1950s, AI has reached a point where the lofty promise is genuinely beginning to be kept. And we’re just getting started.

Ron's book list on the background and foundation of AI

Ron Kneusel Why did Ron love this book?

Goodfellow’s Deep Learning is a must in the field because it was the first. Prince’s new book is an essential follow-up to be up-to-date with the latest model types, including diffusion models (think Stable Diffusion or DALL-E), transformers (the heart of large language models), graph networks (reasoning over relationships), and reinforcement learning.

The math level is similar to what you’ll find in Goodfellow’s book.

By Simon J.D. Prince,

Why should I read it?

1 author picked Understanding Deep Learning as one of their favorite books, and they share why you should read it.

What is this book about?

An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice.

Deep learning is a fast-moving field with sweeping relevance in today’s increasingly digital world. Understanding Deep Learning provides an authoritative, accessible, and up-to-date treatment of the subject, covering all the key topics along with recent advances and cutting-edge concepts. Many deep learning texts are crowded with technical details that obscure fundamentals, but Simon Prince ruthlessly curates only the most important ideas to provide a high density of critical information in an intuitive and digestible form. From machine learning basics to advanced…


Book cover of Deep Learning with Python

Jakub Langr Author Of GANs in Action: Deep Learning with Generative Adversarial Networks

From my list on applied deep learning.

Why am I passionate about this?

I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.

Jakub's book list on applied deep learning

Jakub Langr Why did Jakub love this book?

This is a fantastic book to get you started. It is written by the author of a leading deep learning framework Keras, which makes even Tensorflow very easy to use. Chollet is a true leader of the deep learning craft and the Manning team always does an excellent job of forcing authors to make the subject matter accessible. Highly recommended!

By Francois Chollet,

Why should I read it?

2 authors picked Deep Learning with Python as one of their favorite books, and they share why you should read it.

What is this book about?

"The first edition of Deep Learning with Python is one of the best books on the subject. The second edition made it even better." - Todd Cook

The bestseller revised! Deep Learning with Python, Second Edition is a comprehensive introduction to the field of deep learning using Python and the powerful Keras library. Written by Google AI researcher Francois Chollet, the creator of Keras, this revised edition has been updated with new chapters, new tools, and cutting-edge techniques drawn from the latest research. You'll build your understanding through practical examples and intuitive explanations that make the complexities of deep learning…


Book cover of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD

Jakub Langr Author Of GANs in Action: Deep Learning with Generative Adversarial Networks

From my list on applied deep learning.

Why am I passionate about this?

I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.

Jakub's book list on applied deep learning

Jakub Langr Why did Jakub love this book?

Jeremy Howard is the lead author and has always been a world-class educator. This book is based on his fast.ai course, which has managed to splice all rigor, simplicity, and cutting edge techniques into one course. It also uses its custom fast.ai framework built on PyTorch, which is the dominant language for researchers. This book is very practically oriented and gets you off the ground very quickly with your own projects!

By Jeremy Howard, Sylvain Gugger,

Why should I read it?

2 authors picked Deep Learning for Coders with Fastai and Pytorch as one of their favorite books, and they share why you should read it.

What is this book about?

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.

Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to…


Book cover of Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Valliappa Lakshmanan Author Of Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops

From my list on to become a machine learning engineer.

Why am I passionate about this?

I have been building real-time, production machine learning models for over 20 years. My book, and my book recommendations, are informed by that experience. I have a lot of empathy for people who are new to machine learning because I’ve taught courses on the topic. I founded the Advanced Solutions Lab at Google where we helped data scientists working for Google Cloud customers (who already knew ML) become ML engineers capable of building reliable ML models. The first two are the books I’d recommend today to newcomers and the last three to folks attending the ASL. 

Valliappa's book list on to become a machine learning engineer

Valliappa Lakshmanan Why did Valliappa love this book?

There are three types of machine learning books — books written for people who want to become machine learning engineers, books written for people who want to become machine learning researchers, and books written for business executives. Reading a book written for researchers or executives can be a frustrating experience if you are a software engineer, social scientist, or mechanical engineer who wants to learn machine learning and get an ML job in the industry.

If you are a coder who wants to become an ML engineer, you have got to learn machine learning concepts, but you want to learn them in a practical way. You need a book that leads with intuition and shows you implementations with code. It has to do this without getting sidetracked into ML theory, getting mired in statistical concepts, or being so superficial that you don’t understand why the code works.…

By Géron Aurélien,

Why should I read it?

1 author picked Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow as one of their favorite books, and they share why you should read it.

What is this book about?

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.

By using concrete examples, minimal theory, and two production-ready Python frameworks-Scikit-Learn and TensorFlow-author Aurelien Geron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help…


Book cover of Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 3e: Concepts, Tools, and Techniques to Build Intelligent Systems

Tomasz Lelek Author Of Software Mistakes and Tradeoffs: How to make good programming decisions

From my list on big data processing ecosystem.

Why am I passionate about this?

I am motivated by working on products that many people use. I've been a part of companies that deliver products impacting millions of people. To achieve it, I am working in the Big Data ecosystem and striving to simplify it by contributing to Dremio's Data LakeHouse solution. I worked on projects using Spark, HDFS, Cassandra, and Kafka technologies. I have been working in the software engineering industry for ten years now, and I've tried to share my experience and lessons learned in the Software Mistakes and Tradeoffs book, hoping that it will allow current and the next generation of engineers to create better software, leading to more happy users.

Tomasz's book list on big data processing ecosystem

Tomasz Lelek Why did Tomasz love this book?

The Hands-on Machine Learning book presents an end-to-end approach to many problems that can be solved with machine learning.

Every concept and topic is backed up with a running code that you can experiment with and adapt to your real-world problems.

Thanks to this book, you will be able to understand the state of the art of today's machine learning and feel comfortable using the most up-to-date ML methods.

By Géron Aurélien,

Why should I read it?

1 author picked Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow 3e as one of their favorite books, and they share why you should read it.

What is this book about?

Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems.

With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout…


Book cover of Cleaning Data for Effective Data Science: Doing the other 80% of the work with Python, R, and command-line tools

Naomi R. Ceder Author Of The Quick Python Book

From my list on to level up your Python skills.

Why am I passionate about this?

I’ve been teaching and writing Python code (and managing others while they write Python code) for over 20 years. After all that time Python is still my tool of choice, and many times Python is the key part of how I explore and think about problems. My experience as a teacher also has prompted me to dig in and look for the simplest way of understanding and explaining the elegant way that Python features fit together. 

Naomi's book list on to level up your Python skills

Naomi R. Ceder Why did Naomi love this book?

I like this book not just because it’s a complete guide to the many ins and outs of data cleaning with Python, but also because David lays out the types of problems and the issues behind them. There are always trade-offs in data cleaning and this book lays out those trade-offs better than any other I’ve seen. This is one of the few books that as I go through it, I struggle to think of anything that could have been said better. 

By David Mertz,

Why should I read it?

1 author picked Cleaning Data for Effective Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

Think about your data intelligently and ask the right questions

Key Features Master data cleaning techniques necessary to perform real-world data science and machine learning tasks Spot common problems with dirty data and develop flexible solutions from first principles Test and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description

Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the…


Book cover of Information Theory, Inference and Learning Algorithms
Book cover of Probabilistic Machine Learning: An Introduction
Book cover of Dive into Deep Learning

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,605

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in machine learning, python, and deep learning?

Machine Learning 53 books
Python 30 books
Deep Learning 20 books