Why am I passionate about this?
I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.
Simon's book list on machine learning and deep neural networks
Why did Simon love this book?
The best parts of this book really represent a gold standard in pedagogical clarity.
Although it’s now twenty years old, there is still much to learn from this rather unconventional book that covers the boundary between machine learning, information theory, and Bayesian methods. There are also odd tangents and curiosities, some of which work better than others but are never dull.
Just writing this review makes me want to go back to it and squeeze more out of it.
2 authors picked Information Theory, Inference and Learning Algorithms as one of their favorite books, and they share why you should read it.
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo…
- Coming soon!