Why am I passionate about this?
My passion for generative AI first ignited in 2016 when I spoke about it at a conference, and ever since then, I can’t stop! I've created an online course, a newsletter and even wrote a book to spread knowledge on this groundbreaking technology. As an instructor, I empower others to explore the boundless potential of generative AI applications. Day in day out, I assist clients in crafting their own generative AI solutions, tailoring them to their unique needs.
Martin's book list on future-proof yourself for the AI era
Why did Martin love this book?
Bishop’s book laid the mathematical groundwork for me, making it a solid foundation for anyone venturing into Generative AI.
I love how it covers Bayesian inference, graphical models, and machine learning fundamentals in a clear, approachable way. I also think, in my personal opinion, that reading my book after this one would be a natural progression to understand where AI is heading, building on the core concepts that Bishop established.
1 author picked Pattern Recognition and Machine Learning as one of their favorite books, and they share why you should read it.
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models…