100 books like Probability

By Michael A. Bean,

Here are 100 books that Probability fans have personally recommended if you like Probability. Shepherd is a community of 10,000+ authors and super readers sharing their favorite books with the world.

Shepherd is reader supported. When you buy books, we may earn an affiliate commission.

Book cover of The Mathematical Theory of Communication

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Who am I?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

While studying computer networks, Claude Shannon did something pretty impressive. He reformulated the majority of classical statistics from scratch using the language and concepts of computer science. 

Statistical noise? There’s a new word for that; it’s called entropy. Also, it turns out it is a good thing, not a bad thing because entropy is equal to the information content or a data set. Tired of minimizing the squared error of everything? That’s fine, minimize the log of its likelihood instead. It does the same thing. This book challenges the assumptions of classical statistics in a way that fits neatly in the mind of a computer scientist. As a quant trader, this book will help you understand and measure the information content of data, which is critical to your success.

By Claude E. Shannon, Warren Weaver,

Why should I read it?

2 authors picked The Mathematical Theory of Communication as one of their favorite books, and they share why you should read it.

What is this book about?

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.


Book cover of The Elements of Statistical Learning: Data Mining, Inference, and Prediction

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Who am I?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

This book might as well be called Introduction to machine learning, and it is probably one of the only books truly deserving of the title. Did you know neural networks have been used for decades to scan checks at the bank? They are called Boltzman Machine. Have you ever heard of how decision trees were used in old-school data mining? You could only get them from proprietary software packages from the early 2000s.

In quant trading, you will constantly face compute power constraints, so it is invaluable to understand the mathematical foundations of the most old-school machine learning methods out there. Researchers 20 years ago used to do a lot of impressive work with a lot less computing power.

By Trevor Hastie, Robert Tibshirani, Jerome Friedman

Why should I read it?

2 authors picked The Elements of Statistical Learning as one of their favorite books, and they share why you should read it.

What is this book about?

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major…


Book cover of Modern Mathematical Statistics with Applications

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Who am I?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

One of my favorite professors, Gretchen Martinet, used this to teach a course called “Mathematical Statistics” when I was at the University of Virginia. It is an extremely profound course full of dense but fundamental mathematical proofs in classical statistics. 

You will learn why the formula for the normal distribution is the way it is, why the sum of squares appears everywhere in statistics, and how to fit a linear regression by hand. In the same way calculus elevates our understanding of rates of changes, the book elevates your understanding of samples, averages, and distributions. Quant trading requires an intuitive sense of how data, models, and aggregates work, making this content essential for your success.

By Jay L. DeVore, Kenneth N. Berk,

Why should I read it?

1 author picked Modern Mathematical Statistics with Applications as one of their favorite books, and they share why you should read it.

What is this book about?

Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data.

The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The…


Book cover of Introduction to Modern Nonparametric Statistics

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Who am I?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

This is one of my favorite underappreciated statistics books of all time. Non-parametric statistics can be otherwise described as statistics without assumptions. The entire goal of this field of study is to prove X is greater than Y without making any assumptions about the underlying distributions of X or Y. The methods are different, and they require more data than other methods, but the learning journey is invaluable.

I personally believe that modern machine learning is simply the modeling section of the school of non-parametric statistics. Working through this book will give you a much deeper understanding of why tools like decision trees are so valuable. It will also to teach you to design rigorous numerical experiments on data sets that are beyond the help of classical statistics.

By James J. Higgins,

Why should I read it?

1 author picked Introduction to Modern Nonparametric Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

Guided by problems that frequently arise in actual practice, James Higgins' book presents a wide array of nonparametric methods of data analysis that researchers will find useful. It discusses a variety of nonparametric methods and, wherever possible, stresses the connection between methods. For instance, rank tests are introduced as special cases of permutation tests applied to ranks. The author provides coverage of topics not often found in nonparametric textbooks, including procedures for multivariate data, multiple regression, multi-factor analysis of variance, survival data, and curve smoothing. This truly modern approach teaches non-majors how to analyze and interpret data with nonparametric procedures…


Book cover of Chances Are . . .: Adventures in Probability

Larry R. Frank Sr. Author Of Wealth Odyssey: The Essential Road Map for Your Financial Journey Where Is It You Are Really Trying to Go with Money?

From my list on issues that confuse many people about money.

Who am I?

Wealth Odyssey is a summary work based on a 12-hour adult education course I taught for 10 years. It’s important to me to educate people through my 29 years in the profession (1994-2023), my focus has always been on helping people first understand that retirement means you’re wealthy enough not to work anymore – working is optional. You don’t need to be rich. Wealth is scalable for any income level and comes from foundation income and investments to supplement that foundation to support your desired lifestyle’s Standard of Individual Living (SOIL) for as long as you live. Your focus should be on your plan and apply a few concepts grounded in well researched evidence.

Larry's book list on issues that confuse many people about money

Larry R. Frank Sr. Why did Larry love this book?

When people think of financial planning, their first thought is investing. Their second thought is retirement.

Kaplans explain risk succinctly: “Everything is possible, yet only one thing happens.” People understand risk but don’t really understand how to apply it rationally to investing (market risks) or to retirement (longevity risk).

But first, having an understanding of what risk is and isn’t, and where it comes from is important before you can apply it to what fuels your plans – markets and longevity.

This book helped me formulate the basic planning concepts I use in my book since personal finance is all about taking risks – as are any other decisions and actions you take in life.

By Michael Kaplan, Ellen Kaplan,

Why should I read it?

1 author picked Chances Are . . . as one of their favorite books, and they share why you should read it.

What is this book about?

A compelling journey through history, mathematics, and philosophy, charting humanity’s struggle against randomness

Our lives are played out in the arena of chance. However little we recognize it in our day-to-day existence, we are always riding the odds, seeking out certainty but settling—reluctantly—for likelihood, building our beliefs on the shadowy props of probability. Chances Are is the story of man’s millennia-long search for the tools to manage the recurrent but unpredictable—to help us prevent, or at least mitigate, the seemingly random blows of disaster, disease, and injustice. In these pages, we meet the brilliant individuals who developed the first abstract…


Book cover of Classical Probability in the Enlightenment

David Flusfeder Author Of Luck: A Personal Account of Fortune, Chance and Risk in Thirteen Investigations

From my list on luck: winning, losing, and seeing opportunity.

Who am I?

My father, when he consented to talk about all the moments in his life when the odds against his survival were so small as to make them statistically non-existent, would say, ‘I was lucky.’ Trying to understand what he meant got me started on this book. As well as being a novelist, I’m a poker player. Luck is a subject that every poker player has a relationship to; more importantly it’s a subject that every person has a relationship to. The combination of family history and intellectual curiosity and the gambler’s desire to win drove me on this quest.

David's book list on luck: winning, losing, and seeing opportunity

David Flusfeder Why did David love this book?

Sadly, Games, Gods, and Gambling by FN David is out of print. This is the next best thing. Lorraine Daston has the supreme gift of making the complicated idea seem straightforward. This is an account of the frenzy for measuring that happened in the 18th century, and how it made the world we live in today, when the gambler’s eye for odds has become the algorithm of taming chance that guides all our decisions.

By Lorraine Daston,

Why should I read it?

1 author picked Classical Probability in the Enlightenment as one of their favorite books, and they share why you should read it.

What is this book about?

What did it mean to be reasonable in the Age of Reason? Classical probabilists from Jakob Bernouli through Pierre Simon Laplace intended their theory as an answer to this question--as "nothing more at bottom than good sense reduced to a calculus," in Laplace's words. In terms that can be easily grasped by nonmathematicians, Lorraine Daston demonstrates how this view profoundly shaped the internal development of probability theory and defined its applications.


Book cover of Probabilistic Machine Learning: An Introduction

Simon J.D. Prince Author Of Understanding Deep Learning

From my list on machine learning and deep neural networks.

Who am I?

I started my career in neuroscience. I wanted to understand brains. That is still proving difficult, and somewhere along the way, I realized my real motivation was to build things, and I wound up working in AI. I love the elegance of mathematical models of the world. Even the simplest machine learning model has complex implications, and exploring them is a joy.

Simon's book list on machine learning and deep neural networks

Simon J.D. Prince Why did Simon love this book?

My knees tremble and my heart quakes when I think of how much work must have gone into these two companion volumes. Collectively, they are more than four times the length of my book, covering the whole of machine learning.

It is an essential encyclopedic resource that should be on the desk of anyone serious about machine learning.

By Kevin P. Murphy,

Why should I read it?

1 author picked Probabilistic Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory.

This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation.

Probabilistic Machine Learning grew out of…


Book cover of An Introduction to Information Theory

James V. Stone Author Of Information Theory: A Tutorial Introduction

From my list on information theory.

Who am I?

My primary interest is in brain function. Because the principal job of the brain is to process information, it is necessary to define exactly what information is. For that, there is no substitute for Claude Shannon’s theory of information. This theory is not only quite remarkable in its own right, but it is essential for telecoms, computers, machine learning (and understanding brain function). I have written ten "tutorial introduction" books, on topics which vary from quantum mechanics to AI. In a parallel universe, I am still an Associate Professor at the University of Sheffield, England.

James' book list on information theory

James V. Stone Why did James love this book?

This is a more comprehensive and mathematically rigorous book than Pierce’s book. For the novice, it should be read-only after first reading Pierce’s more informal text. Due to its vintage, the layout is fairly cramped, but the content is impeccable. At almost 500 pages, it covers a huge amount of material. This was my main reference book on information theory for many years, but it now sits alongside more recent texts, like MacKay’s book (see below). It is also published by Dover, so it is reasonably priced.

By Fazlollah M. Reza,

Why should I read it?

1 author picked An Introduction to Information Theory as one of their favorite books, and they share why you should read it.

What is this book about?

Written for an engineering audience, this book has a threefold purpose: (1) to present elements of modern probability theory — discrete, continuous, and stochastic; (2) to present elements of information theory with emphasis on its basic roots in probability theory; and (3) to present elements of coding theory.
The emphasis throughout the book is on such basic concepts as sets, the probability measure associated with sets, sample space, random variables, information measure, and capacity. These concepts proceed from set theory to probability theory and then to information and coding theories. No formal prerequisites are required other than the usual undergraduate…


Book cover of Realism and Complexity in Social Science

Rick Szostak Author Of Integrating the Human Sciences: Enhancing Progress and Coherence across the Social Sciences and Humanities

From my list on reforming the social sciences and humanities.

Who am I?

I am proud to be a human (social) scientist but think that we could collectively achieve a much more successful human science enterprise. And I believe that a better human science would translate into better public policy. Most human scientists focus on their own research, paying little attention to how the broader enterprise functions. I have written many works of a methodological nature over the years. I am pleased to point here to a handful of works with sound advice for enhancing the human science enterprise.

Rick's book list on reforming the social sciences and humanities

Rick Szostak Why did Rick love this book?

I really liked Williams’ writing style. He is very clear, provides good examples, and is very careful in his argumentation.

I very much liked – and indeed borrowed – his strategy of summarizing the main arguments of each chapter. This is especially important since his book addresses a wide range of challenges in social science. I especially liked his discussion of how the variables we measure are never perfect proxies for the phenomena that we hope to understand.

I also liked his careful discussion of how social scientists need to be more reflective in their work. And I found his discussion of the nature of causation in social science deeply insightful.

By Malcolm Williams,

Why should I read it?

1 author picked Realism and Complexity in Social Science as one of their favorite books, and they share why you should read it.

What is this book about?

Realism and Complexity in Social Science is an argument for a new approach to investigating the social world, that of complex realism. Complex realism brings together a number of strands of thought, in scientific realism, complexity science, probability theory and social research methodology.

It proposes that the reality of the social world is that it is probabilistic, yet there exists enough invariance to make the discovery and explanation of social objects and causal mechanisms possible. This forms the basis for the development of a complex realist foundation for social research, that utilises a number of new and novel approaches to…


Book cover of The Book of Why: The New Science of Cause and Effect

Michael Anthony Lewis Author Of Social Workers Count: Numbers and Social Issues

From my list on quant geeks.

Who am I?

I've had a long-time interest in two things: mathematics and social issues. This is why I got degrees in social work (Masters) and sociology (PhD) and eventually focused on the quantitative aspects of these two areas. Social Workers Count gave me the chance to marry these two interests by showing the role mathematics can play in illuminating a number of pressing social issues.

Michael's book list on quant geeks

Michael Anthony Lewis Why did Michael love this book?

The previous book is about the most prevalent forms of AI, many of which focus on prediction or classification.

For example, a bank may use an AI system that utilizes data about those applying for a loan to predict whether they're likely to default. The judicial system might use an AI model which takes into account a convicted person's attributes in order to predict whether that person is likely to re-offend. A hospital might observe attributes of cells in order to classify them as cancerous or not.

Judea Pearl, a computer scientist at UCLA, has been in a long-running effort to get those working in AI to focus more on designing systems which could engage in causal reasoning. And in doing so, he's had a major influence on a number of disciplines, including computer science, philosophy, statistics, epidemiology, and the social sciences.

In The Book of Why, Pearl teams up…

By Judea Pearl, Dana MacKenzie,

Why should I read it?

4 authors picked The Book of Why as one of their favorite books, and they share why you should read it.

What is this book about?

'Wonderful ... illuminating and fun to read'
- Daniel Kahneman, winner of the Nobel Prize and author of Thinking, Fast and Slow

'"Pearl's accomplishments over the last 30 years have provided the theoretical basis for progress in artificial intelligence and have redefined the term "thinking machine"'
- Vint Cerf, Chief Internet Evangelist, Google, Inc.

The influential book in how causality revolutionized science and the world, by the pioneer of artificial intelligence

'Correlation does not imply causation.' This mantra was invoked by scientists for decades in order to avoid taking positions as to whether one thing caused another, such as smoking…


5 book lists we think you will like!

Interested in probability, math, and philosophy?

10,000+ authors have recommended their favorite books and what they love about them. Browse their picks for the best books about probability, math, and philosophy.

Probability Explore 15 books about probability
Math Explore 241 books about math
Philosophy Explore 1,487 books about philosophy