Fans pick 100 books like The Elements of Statistical Learning

By Trevor Hastie, Robert Tibshirani, Jerome Friedman

Here are 100 books that The Elements of Statistical Learning fans have personally recommended if you like The Elements of Statistical Learning. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of The Mathematical Theory of Communication

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

While studying computer networks, Claude Shannon did something pretty impressive. He reformulated the majority of classical statistics from scratch using the language and concepts of computer science. 

Statistical noise? There’s a new word for that; it’s called entropy. Also, it turns out it is a good thing, not a bad thing because entropy is equal to the information content or a data set. Tired of minimizing the squared error of everything? That’s fine, minimize the log of its likelihood instead. It does the same thing. This book challenges the assumptions of classical statistics in a way that fits neatly in the mind of a computer scientist. As a quant trader, this book will help you understand and measure the information content of data, which is critical to your success.

By Claude E. Shannon, Warren Weaver,

Why should I read it?

2 authors picked The Mathematical Theory of Communication as one of their favorite books, and they share why you should read it.

What is this book about?

Scientific knowledge grows at a phenomenal pace--but few books have had as lasting an impact or played as important a role in our modern world as The Mathematical Theory of Communication, published originally as a paper on communication theory more than fifty years ago. Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.


Book cover of Principles of Statistical Inference

David J. Hand Author Of The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day

From my list on statistics from a statistician.

Why am I passionate about this?

When people ask me why I became a statistician, and what its attraction is, I simply tell them that, using statistics, I have been on voyages of discovery and travelled to worlds they didn’t know existed. Using data and statistical methods instead of light and optics, I have seen things others could not imagine. Like an explorer of old, I have joined adventures peeling back the mysteries of the world around us. In my books on statistics, data science, data mining, and artificial intelligence, I have tried to convey some of this excitement, and to show the reader how they too can take part in this wonderful modern adventure.

David's book list on statistics from a statistician

David J. Hand Why did David love this book?

This is a deep and beautifully elegant overview of the ideas underlying statistical inference. It is the finest concise outline I know of the foundations, dealing with the key concepts and ideas in an accessible way. Written by one of the leading creators of modern statistics, without unnecessary mathematics or superfluous detail it includes a balanced description of the fundamentals of distinct schools of thought, such as Bayesian and frequentist schools. The book did not exist when I started learning statistics, but I am certain I would have understood the discipline’s subtleties much sooner if it had.

By D.R. Cox,

Why should I read it?

1 author picked Principles of Statistical Inference as one of their favorite books, and they share why you should read it.

What is this book about?

In this definitive book, D. R. Cox gives a comprehensive and balanced appraisal of statistical inference. He develops the key concepts, describing and comparing the main ideas and controversies over foundational issues that have been keenly argued for more than two-hundred years. Continuing a sixty-year career of major contributions to statistical thought, no one is better placed to give this much-needed account of the field. An appendix gives a more personal assessment of the merits of different ideas. The content ranges from the traditional to the contemporary. While specific applications are not treated, the book is strongly motivated by applications…


Book cover of Computer Age Statistical Inference, Algorithms, Evidence, and Data Science

Ron S. Kenett Author Of The Real Work of Data Science: Turning Data into Information, Better Decisions, and Stronger Organizations

From my list on how numbers turn into information.

Why am I passionate about this?

I was trained as a mathematician but have always been motivated by problem-solving challenges. Statistics and analytics combine mathematical models with statistical thinking. My career has always focused on this combination and, as a statistician, you can apply it in a wide range of domains. The advent of big data and machine learning algorithms has opened up new opportunities for applied statisticians. This perspective complements computer science views on how to address data science. The Real Work of Data Science, covers 18 areas (18 chapters) that need to be pushed forward in order to turning data into information, better decisions, and stronger organizations

Ron's book list on how numbers turn into information

Ron S. Kenett Why did Ron love this book?

The text covers classic statistical inference, early computer-age methods, and twenty-century topics. This puts a unique perspective on current analytic technologies labeled machine learning, artificial intelligence, and statical learning. The examples used provide a powerful description of the methods covered and the compare and contrast sections highlight the evolution of analytics. This book by Efron and Hastie is a natural follow-up source for readers interested in more details.

By Bradley Efron, Trevor Hastie,

Why should I read it?

2 authors picked Computer Age Statistical Inference, Algorithms, Evidence, and Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic…


If you love The Elements of Statistical Learning...

Ad

Book cover of From One Cell: A Journey into Life's Origins and the Future of Medicine

From One Cell By Ben Stanger,

Everybody knows that all animals—bats, bears, sharks, ponies, and people—start out as a single cell: the fertilized egg. But how does something no bigger than the period at the end of this sentence give rise to the remarkable complexity of each of these creatures?

FROM ONE CELL is a dive…

Book cover of An Introduction to Probability Theory and Its Applications, Vol. 1

David J. Hand Author Of The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day

From my list on statistics from a statistician.

Why am I passionate about this?

When people ask me why I became a statistician, and what its attraction is, I simply tell them that, using statistics, I have been on voyages of discovery and travelled to worlds they didn’t know existed. Using data and statistical methods instead of light and optics, I have seen things others could not imagine. Like an explorer of old, I have joined adventures peeling back the mysteries of the world around us. In my books on statistics, data science, data mining, and artificial intelligence, I have tried to convey some of this excitement, and to show the reader how they too can take part in this wonderful modern adventure.

David's book list on statistics from a statistician

David J. Hand Why did David love this book?

This is my go-to book for when I need to find proofs or examples of the theory or applications of probability. It’s an old book now, but it remains unsurpassed as an outline of the foundations of classical probability theory. The preface to the second edition says “in addition to an unexpected number of users, the book seems to have found friends who read it merely for fun; it is most heartening that they range from pure mathematicians to pure amateurs”. And that must surely be exactly right: I find myself re-reading it because of the insights and perspectives it sheds. 

By William Feller,

Why should I read it?

1 author picked An Introduction to Probability Theory and Its Applications, Vol. 1 as one of their favorite books, and they share why you should read it.

What is this book about?

A complete guide to the theory and practical applications of probability theory

An Introduction to Probability Theory and Its Applications uniquely blends a comprehensive overview of probability theory with the real-world application of that theory. Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.


Book cover of Kendall's Advanced Theory of Statistics, Distribution Theory

David J. Hand Author Of The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day

From my list on statistics from a statistician.

Why am I passionate about this?

When people ask me why I became a statistician, and what its attraction is, I simply tell them that, using statistics, I have been on voyages of discovery and travelled to worlds they didn’t know existed. Using data and statistical methods instead of light and optics, I have seen things others could not imagine. Like an explorer of old, I have joined adventures peeling back the mysteries of the world around us. In my books on statistics, data science, data mining, and artificial intelligence, I have tried to convey some of this excitement, and to show the reader how they too can take part in this wonderful modern adventure.

David's book list on statistics from a statistician

David J. Hand Why did David love this book?

This is a wonderful book because it says it all. Of course, that’s an exaggeration because no book could possibly encompass the vast breadth of modern statistics, but anyone who read through this multi-volume work would have an enviable knowledge of the discipline. It’s an unsurpassed general source of information about the foundational concepts and tools of statistics, and a reference source I regularly turn to when I need to remind myself of the theory underlying a concept or method.

Book cover of Modern Mathematical Statistics with Applications

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

One of my favorite professors, Gretchen Martinet, used this to teach a course called “Mathematical Statistics” when I was at the University of Virginia. It is an extremely profound course full of dense but fundamental mathematical proofs in classical statistics. 

You will learn why the formula for the normal distribution is the way it is, why the sum of squares appears everywhere in statistics, and how to fit a linear regression by hand. In the same way calculus elevates our understanding of rates of changes, the book elevates your understanding of samples, averages, and distributions. Quant trading requires an intuitive sense of how data, models, and aggregates work, making this content essential for your success.

By Jay L. DeVore, Kenneth N. Berk,

Why should I read it?

1 author picked Modern Mathematical Statistics with Applications as one of their favorite books, and they share why you should read it.

What is this book about?

Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data.

The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The…


If you love Trevor Hastie...

Ad

Book cover of Diary of a Citizen Scientist: Chasing Tiger Beetles and Other New Ways of Engaging the World

Diary of a Citizen Scientist By Sharman Apt Russell,

Citizen Scientist begins with this extraordinary statement by the Keeper of Entomology at the London Museum of Natural History, “Study any obscure insect for a week and you will then know more than anyone else on the planet.”

As the author chases the obscure Western red-bellied tiger beetle across New…

Book cover of Probability: The Science of Uncertainty: With Applications to Investments, Insurance, and Engineering

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

Everyone knows what probability is, and we all understand how a coin flip works, but not everyone can explain the optimal betting strategies for a roulette table. We don’t study probability to understand the likelihood of events. We study probability to understand the expected outcomes of business processes that depend on those events.

In other words, this book won’t just teach you about probabilities, it will teach you about business strategies associated with those probabilities. It will help you answer a question like: How do I maximize the profit on this life insurance policy, given this set of survival probabilities? It isn’t just a likelihood question, it is a business question. I highly recommend that anyone studying probability does so through an actuarial lens.

By Michael A. Bean,

Why should I read it?

1 author picked Probability as one of their favorite books, and they share why you should read it.

What is this book about?

This book covers the basic probability of distributions with an emphasis on applications from the areas of investments, insurance, and engineering. Written by a Fellow of the Casualty Actuarial Society and the Society of Actuaries with many years of experience as a university professor and industry practitioner, the book is suitable as a text for senior undergraduate and beginning graduate students in mathematics, statistics, actuarial science, finance, or engineering as well as a reference for practitioners in these fields. The book is particularly well suited for students preparing for professional exams, and for several years it has been recommended as…


Book cover of Introduction to Modern Nonparametric Statistics

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

This is one of my favorite underappreciated statistics books of all time. Non-parametric statistics can be otherwise described as statistics without assumptions. The entire goal of this field of study is to prove X is greater than Y without making any assumptions about the underlying distributions of X or Y. The methods are different, and they require more data than other methods, but the learning journey is invaluable.

I personally believe that modern machine learning is simply the modeling section of the school of non-parametric statistics. Working through this book will give you a much deeper understanding of why tools like decision trees are so valuable. It will also to teach you to design rigorous numerical experiments on data sets that are beyond the help of classical statistics.

By James J. Higgins,

Why should I read it?

1 author picked Introduction to Modern Nonparametric Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

Guided by problems that frequently arise in actual practice, James Higgins' book presents a wide array of nonparametric methods of data analysis that researchers will find useful. It discusses a variety of nonparametric methods and, wherever possible, stresses the connection between methods. For instance, rank tests are introduced as special cases of permutation tests applied to ranks. The author provides coverage of topics not often found in nonparametric textbooks, including procedures for multivariate data, multiple regression, multi-factor analysis of variance, survival data, and curve smoothing. This truly modern approach teaches non-majors how to analyze and interpret data with nonparametric procedures…


Book cover of Mathematics for Machine Learning

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why did Yuxi love this book?

The book is a well-curated collection of the essential mathematical concepts that form ML. You may experience a cultural shock jumping to this book from the previous one, because the writing in this book is a bit formal. However, it is the missing but necessary piece for building solid foundations for practical ML. You will find it more valuable combining the intuition behind ML that you gained previously. And the explanations in the book are succinct and from the ML perspectives. For instance, partial derivatives are explained in terms of neural network weight optimization. I wish the concepts in Linear Algebra, Vector Calculus, and Probability courses back in college were introduced this way so I understand better how they are applied.  

By Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong

Why should I read it?

1 author picked Mathematics for Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these…


If you love The Elements of Statistical Learning...

Ad

Book cover of What Walks This Way: Discovering the Wildlife Around Us Through Their Tracks and Signs

What Walks This Way By Sharman Apt Russell,

Nature writer Sharman Apt Russell tells stories of her experiences tracking wildlife—mostly mammals, from mountain lions to pocket mice—near her home in New Mexico, with lessons that hold true across North America. She guides readers through the basics of identifying tracks and signs, revealing a landscape filled with the marks…

Book cover of Computer Vision: Models, Learning, and Inference

Mark S. Nixon Author Of Feature Extraction and Image Processing for Computer Vision

From my list on computer vision from a veteran professor.

Why am I passionate about this?

It’s been fantastic to work in computer vision, especially when it is used to build biometric systems. I and my 80 odd PhD students have pioneered systems that recognise people by the way they walk, by their ears, and many other new things too. To build the systems, we needed computer vision techniques and architectures, both of which work with complex real-world imagery. That’s what computer vision gives you: a capability to ‘see’ using a computer. I think we can still go a lot further: to give blind people sight, to enable better invasive surgery, to autonomise more of our industrial society, and to give us capabilities we never knew we’d have.

Mark's book list on computer vision from a veteran professor

Mark S. Nixon Why did Mark love this book?

This fine book is about learning the relationships between what is seen in an image, and what is known about the world. It’s a counterpart to our book on feature extraction and it shows you what can be achieved with the features. It’s not for those who shy from maths, as is the case for all of the books here. So that you can build the techniques, Simon’s book also includes a wide variety of algorithms to help you on your way.

By Simon J.D. Prince,

Why should I read it?

1 author picked Computer Vision as one of their favorite books, and they share why you should read it.

What is this book about?

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build…


Book cover of The Mathematical Theory of Communication
Book cover of Principles of Statistical Inference
Book cover of Computer Age Statistical Inference, Algorithms, Evidence, and Data Science

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,584

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in machine learning, math, and data mining?

Machine Learning 53 books
Math 276 books
Data Mining 13 books