Why am I passionate about this?
I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.
Tilman's book list on intro to programming and data science with R
Why did Tilman love this book?
For those intending to use R with an eye on the popular 'Tidyverse' suite of packages – which facilitate the handling, manipulation, and visualisation of data sets – it's hard to go past this book. From the founding contributors of the RStudio/Tidyverse worlds, this is a great way to learn about this dialect of R against the overarching backdrop of statistical data analysis and data science.
1 author picked R for Data Science as one of their favorite books, and they share why you should read it.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along…
- Coming soon!