68 books like A First Course in Statistical Programming with R

By W. John Braun, Duncan J. Murdoch,

Here are 68 books that A First Course in Statistical Programming with R fans have personally recommended if you like A First Course in Statistical Programming with R. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

For those intending to use R with an eye on the popular 'Tidyverse' suite of packages – which facilitate the handling, manipulation, and visualisation of data setsit's hard to go past this book. From the founding contributors of the RStudio/Tidyverse worlds, this is a great way to learn about this dialect of R against the overarching backdrop of statistical data analysis and data science.

By Hadley Wickham, Garrett Grolemund,

Why should I read it?

1 author picked R for Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along…


Book cover of R in Action: Data Analysis and Graphics with R

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

This provides a superb balance between technical aspects of R coding and the statistical methods that motivate its use. It's rare to find a book on topics like this that are written with Kabacoff's easygoing yet precise style, which makes it ideal for beginners. From my own experience, it is obvious the author has spent many years teaching this type of content, knowing where things deserve extra explanation up front and where other more technical details can be relegated to more advanced texts.

By Robert I. Kabacoff,

Why should I read it?

1 author picked R in Action as one of their favorite books, and they share why you should read it.

What is this book about?

DESCRIPTION

R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.



R in Action, Second Edition is language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that…


Book cover of The R Book

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

An authoritative tome on R. This book is the ultimate reference guide, heavy on statistical methods from the simple to the advanced. Of the 29 chapters, only the first five chapters or so have R syntactical and programming skills as their main focus; the remaining content highlights the many and varied statistical techniques R is capable of. I think this is a fantastic book to have on the shelf for people who are likely to need R and its contributed packages for a variety of different statistical analyses, but might not know where to initially start for any given statistical method.

By Michael J. Crawley,

Why should I read it?

1 author picked The R Book as one of their favorite books, and they share why you should read it.

What is this book about?

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: * Features full colour text and extensive graphics throughout. * Introduces a clear structure with numbered section headings to help readers locate information more efficiently. * Looks at the evolution of R over the…


Book cover of R For Dummies

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

A gentle yet detailed book for beginner programmers. A great book for those who know they'll be getting up to some programming in R but who are very new to programming in general. The book's chapters are filled with content on the syntax, usage, and 'best practice' guidelines. The examples guide the reader in a step-by-step fashion to maximise understanding. An especially unique chapter providing examples on things you can do in R that you might've otherwise done in Excel is one of its stand-out features.

By Andrie De Vries, Joris Meys,

Why should I read it?

1 author picked R For Dummies as one of their favorite books, and they share why you should read it.

What is this book about?

Mastering R has never been easier Picking up R can be tough, even for seasoned statisticians and data analysts. R For Dummies, 2nd Edition provides a quick and painless way to master all the R you'll ever need. Requiring no prior programming experience and packed with tons of practical examples, step-by-step exercises, and sample code, this friendly and accessible guide shows you how to know your way around lists, data frames, and other R data structures, while learning to interact with other programs, such as Microsoft Excel. You'll learn how to reshape and manipulate data, merge data sets, split and…


Book cover of Predict and Surveil: Data, Discretion, and the Future of Policing

Luke Hunt Author Of Police Deception and Dishonesty: The Logic of Lying

From my list on the cluster-f*ck we call policing.

Why am I passionate about this?

I’m an Associate Professor in the University of Alabama’s Department of Philosophy. I worked as an FBI Special Agent before making the natural transition to academic philosophy. Being a professor was always a close second to Quantico, but that scene in Point Break in which Keanu Reeves and Patrick Swayze fight Anthony Kiedis on the beach made it seem like the FBI would be more fun than academia. In my current position as a professor at the University of Alabama, I teach in my department’s Jurisprudence Specialization. My primary research interests are at the intersection of philosophy of law, political philosophy, and criminal justice. I’ve written three books on policing.

Luke's book list on the cluster-f*ck we call policing

Luke Hunt Why did Luke love this book?

I love this book because it reminds us of the many ways that technology can affect justice.

It is tempting to think sophisticated tactics such as “predictive policing” can solve all problems relating to human bias. However, Brayne shows that data and algorithms do not eliminate bias and discretion. Instead, high-tech police tools simply make bias less overt and visible, which erodes the public’s ability to hold the police accountable.

I especially enjoyed how the book flips the script, considering diverse ways to use these tools to help the public. For example, how can municipalities use technology to analyze the underlying factors that contribute to policing problems in the first place?

By Sarah Brayne,

Why should I read it?

1 author picked Predict and Surveil as one of their favorite books, and they share why you should read it.

What is this book about?

The scope of criminal justice surveillance, from the police to the prisons, has expanded rapidly in recent decades. At the same time, the use of big data has spread across a range of fields, including finance, politics, health, and marketing. While law enforcement's use of big data is hotly contested, very little is known about how the police actually use it in daily operations and with what consequences.

In Predict and Surveil, Sarah Brayne offers an unprecedented, inside look at how police use big data and new surveillance technologies, leveraging on-the-ground fieldwork with one of the most technologically advanced law…


Book cover of How to Lie with Statistics

Bastiaan C. van Fraassen Author Of Philosophy and Science of Risk: An Introduction

From my list on exploring the meaning of probability and risk.

Why am I passionate about this?

I’ve wanted to be a philosopher since I read Plato’s Phaedo when I was 17, a new immigrant in Canada. Since then, I’ve been fascinated with time, space, and quantum mechanics and involved in the great debates about their mysteries. I saw probability coming into play more and more in curious roles both in the sciences and in practical life. These five books led me on an exciting journey into the history of probability, the meaning of risk, and the use of probability to assess the possibility of harm. I was gripped, entertained, illuminated, and often amazed at what I was discovering. 

Bastiaan's book list on exploring the meaning of probability and risk

Bastiaan C. van Fraassen Why did Bastiaan love this book?

I am laughing out loud, even now that I am rereading this book for the umpteenth time. Fraudsters are so clever, and so is advertising. And then there is sloppy journalism with its “wow” statistics.

I like his book enormously, not least because of its witty illustrations. It is subversive, comic, and provocative, and it makes me wise to seductive, misleading practices–and it does so with a light touch.

By Darrell Huff, Irving Geis (illustrator),

Why should I read it?

3 authors picked How to Lie with Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

From distorted graphs and biased samples to misleading averages, there are countless statistical dodges that lend cover to anyone with an ax to grind or a product to sell. With abundant examples and illustrations, Darrell Huff's lively and engaging primer clarifies the basic principles of statistics and explains how they're used to present information in honest and not-so-honest ways. Now even more indispensable in our data-driven world than it was when first published, How to Lie with Statistics is the book that generations of readers have relied on to keep from being fooled.


Book cover of Competing on Analytics: The New Science of Winning

Jeremy Adamson Author Of Minding the Machines: Building and Leading Data Science and Analytics Teams

From my list on for data science and analytics leaders.

Why am I passionate about this?

I am a leader in analytics and AI strategy, and have a broad range of experience in aviation, energy, financial services, and the public sector.  I have worked with several major organizations to help them establish a leadership position in data science and to unlock real business value using advanced analytics. 

Jeremy's book list on for data science and analytics leaders

Jeremy Adamson Why did Jeremy love this book?

This is a foundational book on analytics and data science as a business function and helped to shape the development of the practice. It provides a view of the discipline through a business lens and avoids deep technical examinations. Though much has changed in the 15 years since it was originally published, it is still essential reading for a leader in the field. No book since has captured as well the competitive differentiation that analytics provides.

By Thomas H. Davenport, Jeanne G. Harris,

Why should I read it?

1 author picked Competing on Analytics as one of their favorite books, and they share why you should read it.

What is this book about?

You have more information at hand about your business environment than ever before. But are you using it to "out-think" your rivals? If not, you may be missing out on a potent competitive tool. In Competing on Analytics: The New Science of Winning, Thomas H. Davenport and Jeanne G. Harris argue that the frontier for using data to make decisions has shifted dramatically. Certain high-performing enterprises are now building their competitive strategies around data-driven insights that in turn generate impressive business results. Their secret weapon? Analytics: sophisticated quantitative and statistical analysis and predictive modeling. Exemplars of analytics are using new…


Book cover of Exploratory Data Analysis

Danyel Fisher Author Of Making Data Visual: A Practical Guide to Using Visualization for Insight

From my list on to inspire you to think differently about data.

Why am I passionate about this?

In sixth grade, my teacher tried to teach the class how to read line charts – and something fell into place for me. Ever since then, I’ve tried to sort data into forms that we can use to make sense of it. As a researcher at Microsoft, I consulted with teams across the organization – from sales to legal; and from Excel to XBox – to help them understand their data. At Honeycomb, I design tools for software operations teams to diagnose their complex systems. These books each gave me an “ah-hah” moment that made me think differently about the craft of creating visualization. They now sit on my shelf in easy reach – I hope you find them fascinating too.

Danyel's book list on to inspire you to think differently about data

Danyel Fisher Why did Danyel love this book?

I learned Tukey’s name about as soon as I learned that data visualization existed as more than a menu in Excel and a personal obsession. Tukey coined the term “exploratory data analysis,” and so tapped into a passion for swimming around in all the interesting rows and columns. Tukey was working before computers were widespread, and so I got a view of how he saw data: working against the constraints of pencil and paper; keeping your hand moving as fast as possible. While the explorations we can do with gigabytes of memory and powerful rendering are very different, the goal of getting information into your head as fast as possible is unchanged.

By John Tukey,

Why should I read it?

1 author picked Exploratory Data Analysis as one of their favorite books, and they share why you should read it.

What is this book about?

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearson.com/statistics-classics-series for a complete list of titles.


The approach in this introductory book is that of informal study of the data. Methods range from plotting picture-drawing techniques to rather elaborate numerical summaries. Several of the methods are the original creations of the author, and all can be carried out either with pencil or aided by hand-held calculator.


0134995457 / 9780134995458 EXPLORATORY DATA ANALYSIS (CLASSIC VERSION), 1/e


Book cover of The Cartoon Guide to Statistics

Martin Sternstein Author Of Barron's AP Statistics

From my list on statistical insights into social issues.

Why am I passionate about this?

I taught for 45 years at Ithaca College broken by two years as Fulbright Professor in West Africa at the University of Liberia. During my years in academia, I developed several new courses including a popular “Math in Africa” class and the first U.S. course for college credit in chess theory. I’ve always had a passion for and continue to have strong interests in (1) national educational and social issues concerning equal access to math education for all and (2) teaching others about the power of mathematics and statistics to help one more deeply understand social issues.

Martin's book list on statistical insights into social issues

Martin Sternstein Why did Martin love this book?

This book is kind of a fun crash course in statistics which covers all the basic concepts at an introductory level.

The cartoons are a little bit dated, but still entertaining. There are lots of pictures and graphs which are a pleasure if you are a visual learner. The reader will come away with many useful tools to help understand real world problems.

I’m a retired math professor, but still got a real kick out of this book and especially appreciated the many good examples referenced such as gender discrimination in salaries and racial discrimination in jury selection. I recommended it to many of my struggling students.

By Larry Gonick, Woollcott Smith,

Why should I read it?

1 author picked The Cartoon Guide to Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

Updated version featuring all new material. If you have ever looked for P-values by shopping at P mart, tried to watch the Bernoulli Trails on "People's Court," or think that the standard deviation is a criminal offense in six states, then you need The Cartoon Guide to Statistics to put you on the road to statistical literacy. The Cartoon Guide to Statistics covers all the central ideas of modern statistics: the summary and display of data, probability in gambling and medicine, random variables, Bernoulli Trails, the Central Limit Theorem, hypothesis testing, confidence interval estimation, and much more-all explained in simple,…


Book cover of Counting: How We Use Numbers to Decide What Matters

Carolyn Purnell Author Of The Sensational Past: How the Enlightenment Changed the Way We Use Our Senses

From my list on everyday things we take for granted.

Why am I passionate about this?

I’m a historian who’s spent far too much time thinking about how the color magenta contributed to climate change and why eighteenth-century humanitarians were obsessed with tobacco enemas. My favorite historical topics—like sensation, color, and truth—don’t initially seem historical, but that’s exactly why they need to be explored. I’ve learned that the things that seem like second nature are where our deepest cultural assumptions and unconscious biases hide. In addition to writing nonfiction, I’ve been lucky enough to grow up on a ranch, live in Paris, work as an interior design writer, teach high school and college, and help stray dogs get adopted.

Carolyn's book list on everyday things we take for granted

Carolyn Purnell Why did Carolyn love this book?

I had never really given much thought to counting until I read this book, but in the very first chapter, Stone made me rethink everything I thought I knew about “one fish, two fish, red fish, blue fish.” She shows that every time we count, we’re making cultural assumptions. For example, what counts as a fish? And what makes the color of the fish more relevant than other features? Counting reveals that while these choices may seem intuitive, basic, and meaningless, they have very real impacts on people’s lives. Especially when we use numbers to measure things like merit, poverty, race, and productivity, those fundamental assumptions matter more than we care to admit.  

By Deborah Stone,

Why should I read it?

1 author picked Counting as one of their favorite books, and they share why you should read it.

What is this book about?

Early in her extraordinary career, Deborah Stone wrote Policy Paradox, a landmark work on politics. Now, in Counting, she revolutionises how we approach numbers and shows how counting shapes the way we see the world. Most of us think of counting as a skill so basic that we see numbers as objective, indisputable facts. Not so, says Stone. In this playful-yet-probing work, Stone reveals the inescapable link between quantifying and classifying, and explains how counting determines almost every facet of our lives-from how we are evaluated at work to how our political opinions are polled to whether we get into…


Book cover of R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Book cover of R in Action: Data Analysis and Graphics with R
Book cover of The R Book

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,188

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in statistics, data processing, and data science?

Statistics 30 books
Data Processing 27 books
Data Science 24 books