Fans pick 100 books like Advances in Financial Machine Learning

By Marcos Lopez de Prado,

Here are 100 books that Advances in Financial Machine Learning fans have personally recommended if you like Advances in Financial Machine Learning. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Statistics and Data Analysis for Financial Engineering: With R Examples

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

I have used this book to teach my Financial Risk Analytics course at Northwestern University for many years. As a textbook, it is surprisingly easy to read, and the abundant exercises are great. This would be a foundational text to read after you have read my own books. It puts you on solid ground to understand all the financial babble that you may read elsewhere. It includes extensive coverage of most basic topics important to a serious quantitative trader, while not being overly mathematical. Easily understandable if you have basic programming and math background from first year of university.

Everything is practical in this book, which isn’t what you would expect from a textbook! There is no math for math’s sake. I have used the techniques discussed in this book for real trading, and for creating features at my machine learning SaaS predictnow.ai. Examples: What’s the difference between net…

By David Ruppert, David S. Matteson,

Why should I read it?

1 author picked Statistics and Data Analysis for Financial Engineering as one of their favorite books, and they share why you should read it.

What is this book about?

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code…


Book cover of Asset Management: A Systematic Approach to Factor Investing

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

As the book’s name suggests, it focuses on factor investing – i.e. long-term investments. Example: what do you think is the real (inflation-adjusted) return of the US stock vs bond markets over time? What is the best way to hedge inflation? (The answer may surprise you!) Nevertheless, a trader will also find inspiration in many of the market themes discussed. Example: Why is a mean-reverting strategy equivalent to shorting realized volatility?

This book has even less math than my 1st book pick, since Andrew Ang used it for his investment class for MBAs. Andrew was a well-known finance professor at Columbia University (where Warren Buffet got his Master’s). He is now Head of BlackRock (AUM=$9.5T!) Systematic Wealth Solutions. I have exchanged emails with him, and he is very friendly and patient with questions.

By Andrew Ang,

Why should I read it?

1 author picked Asset Management as one of their favorite books, and they share why you should read it.

What is this book about?

Stocks and bonds? Real estate? Hedge funds? Private equity? If you think those are the things to focus on in building an investment portfolio, Andrew Ang has accumulated a body of research that will prove otherwise.
In his new book Asset Management: A Systematic Approach to Factor Investing, Ang upends the conventional wisdom about asset allocation by showing that what matters aren't asset class labels but the bundles of overlapping risks they represent. Making investments is like eating a healthy diet, Ang says: you've got to look through the foods you eat to focus on the nutrients they contain. Failing…


Book cover of Option Trading: Pricing and Volatility Strategies and Techniques

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

Disclaimer: I like Euan’s books not because he is a friend and has endorsed my books. Long before we became friends, I have bought his book, and said to myself “Wow! This is the first book about options trading that is not just a bunch of trite statements about payouts from various straddles and spreads positions!” It talks about some unique arbitrage opportunities that only professionals knew about. On the other hand, the amount of mathematics is very manageable, and can largely be skipped without affecting the practical applications of the concepts. 

By Euan Sinclair,

Why should I read it?

1 author picked Option Trading as one of their favorite books, and they share why you should read it.

What is this book about?

An A to Z options trading guide for the new millennium and the new economy Written by professional trader and quantitative analyst Euan Sinclair, Option Trading is a comprehensive guide to this discipline covering everything from historical background, contract types, and market structure to volatility measurement, forecasting, and hedging techniques. This comprehensive guide presents the detail and practical information that professional option traders need, whether they're using options to hedge, manage money, arbitrage, or engage in structured finance deals. It contains information essential to anyone in this field, including option pricing and price forecasting, the Greeks, implied volatility, volatility measurement…


Book cover of Algorithmic and High-Frequency Trading

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

Finally, for those who are not afraid of math, they should read this book because there is a lot of heavy-duty math. The good news for the rest of us is you can ignore all the math and still get a lot out of it, especially knowledge about market microstructure and how to find the theoretically optimal trading strategies given some assumptions about the price dynamics. Even if you don’t want to or can’t solve those darn stochastic differential equations, you can still implement a numerical approximation. At the minimum, you will learn common trading lingo such as “walking the book” or “the ITCH feed”.

By Alvaro Cartea, Sebastian Jaimungal, Jose Penalva

Why should I read it?

1 author picked Algorithmic and High-Frequency Trading as one of their favorite books, and they share why you should read it.

What is this book about?

The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and…


Book cover of Computer Age Statistical Inference, Algorithms, Evidence, and Data Science

Ron S. Kenett Author Of The Real Work of Data Science: Turning Data into Information, Better Decisions, and Stronger Organizations

From my list on how numbers turn into information.

Why am I passionate about this?

I was trained as a mathematician but have always been motivated by problem-solving challenges. Statistics and analytics combine mathematical models with statistical thinking. My career has always focused on this combination and, as a statistician, you can apply it in a wide range of domains. The advent of big data and machine learning algorithms has opened up new opportunities for applied statisticians. This perspective complements computer science views on how to address data science. The Real Work of Data Science, covers 18 areas (18 chapters) that need to be pushed forward in order to turning data into information, better decisions, and stronger organizations

Ron's book list on how numbers turn into information

Ron S. Kenett Why did Ron love this book?

The text covers classic statistical inference, early computer-age methods, and twenty-century topics. This puts a unique perspective on current analytic technologies labeled machine learning, artificial intelligence, and statical learning. The examples used provide a powerful description of the methods covered and the compare and contrast sections highlight the evolution of analytics. This book by Efron and Hastie is a natural follow-up source for readers interested in more details.

By Bradley Efron, Trevor Hastie,

Why should I read it?

2 authors picked Computer Age Statistical Inference, Algorithms, Evidence, and Data Science as one of their favorite books, and they share why you should read it.

What is this book about?

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic…


Book cover of The Hundred-Page Machine Learning Book

Valliappa Lakshmanan Author Of Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops

From my list on to become a machine learning engineer.

Why am I passionate about this?

I have been building real-time, production machine learning models for over 20 years. My book, and my book recommendations, are informed by that experience. I have a lot of empathy for people who are new to machine learning because I’ve taught courses on the topic. I founded the Advanced Solutions Lab at Google where we helped data scientists working for Google Cloud customers (who already knew ML) become ML engineers capable of building reliable ML models. The first two are the books I’d recommend today to newcomers and the last three to folks attending the ASL. 

Valliappa's book list on to become a machine learning engineer

Valliappa Lakshmanan Why did Valliappa love this book?

Even if you have the practical knowledge, it's sometimes necessary to understand the mathematical and theoretical concepts that underlie the machine learning approaches you are using. This book is a great introduction to the world of ML theory.

By Andriy Burkov,

Why should I read it?

1 author picked The Hundred-Page Machine Learning Book as one of their favorite books, and they share why you should read it.

What is this book about?

WARNING: will not work on e-ink Kindle devices!
Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world: "Burkov has undertaken a very useful but impossibly hard task in reducing all of machine learning to 100 pages. He succeeds well in choosing the topics — both theory and practice — that will be useful to practitioners, and for the reader who understands that this is the first 100 (or actually 150) pages you will read, not the last, provides a solid introduction to the field."

Aurélien Géron, Senior AI Engineer, author of the…


Book cover of Human + Machine: Reimagining Work in the Age of AI

Steve Finlay Author Of Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies

From my list on machine learning for managers and business leaders.

Why am I passionate about this?

I have worked in the field of machine learning and predictive analytics for many years. Having started out as a technical specialist, I have become increasingly interested in the legal, ethical, and social aspects of these subjects. This is because it is these “soft issues” that often determine how successful these technologies are in practice and if they are viewed as a force for good or evil in wider society. This has led me to write several books focusing on the practical and cultural aspects of these subjects and how best to apply them for the benefit of business, individuals, and wider society.

Steve's book list on machine learning for managers and business leaders

Steve Finlay Why did Steve love this book?

Many writers have discussed the dangers that artificial intelligence and machine learning represent to our livelihoods, and how clever computers and autonomous robots will supplant us all in the workplace. What I like about this book is that it provides an alternative, and very optimistic, view of how these new technologies are being deployed. The authors present a future based on a partnership, in which artificial intelligence-based tools work in tandem with human workers, enhancing what individuals can do in the workplace rather than replacing them.

By Paul R. Daugherty, H. James Wilson,

Why should I read it?

1 author picked Human + Machine as one of their favorite books, and they share why you should read it.

What is this book about?

AI is radically transforming business. Are you ready?

Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now--in software that senses what we need, supply chains that "think" in real time, and robots that respond to changes in their environment. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on?

In Human + Machine, Accenture leaders Paul R. Daugherty and H. James (Jim) Wilson show…


Book cover of From Deep Learning to Rational Machines: What the History of Philosophy Can Teach Us about the Future of Artificial Intelligence

Dean Anthony & Sarah-Jayne Gratton Author Of Playing God with Artificial Intelligence

From my list on groundbreaking books on the future of AI.

Why are we passionate about this?

Coming from two very different backgrounds gives Dean and I a unique ‘view’ of a topic that we are both hugely passionate about: artificial intelligence. Our work together has gifted us a broader perspective in terms of understanding the development of and the philosophy beneath what is coined as artificial intelligence today and where we truly stand in terms of its potential for good – and evil. Our book list is intended to provide a great starting point from where you can jump into this incredibly absorbing topic and draw your own conclusions about where the future might take us.

Dean's book list on groundbreaking books on the future of AI

Dean Anthony & Sarah-Jayne Gratton Why did Dean love this book?

Don't be fooled by the lack of a breezy narrative. This read is a dense exploration of deep learning's impact and is certainly not an ‘easy read’ by any measure, but its rewards are substantial.

Buckner delves deep into the philosophical debates surrounding AI, particularly the clash between empiricism and rationalism. Through this lens, he develops a "moderate empiricism" that sheds light on the true potential and limitations of AI. While the book demands focus, we found the payoff to be significant.

By Cameron J. Buckner,

Why should I read it?

1 author picked From Deep Learning to Rational Machines as one of their favorite books, and they share why you should read it.

What is this book about?

This book provides a framework for thinking about foundational philosophical questions surrounding the use of deep artificial neural networks ("deep learning") to achieve artificial intelligence. Specifically, it links recent breakthroughs to classic works in empiricist philosophy of mind. In recent assessments of deep learning's potential, scientists have cited historical figures from the philosophical debate between nativism and empiricism, which concerns the origins of abstract knowledge. These empiricists were faculty psychologists; that is, they argued that the extraction of abstract knowledge from experience involves the active engagement of psychological faculties such as perception, memory, imagination, attention, and empathy. This book explains…


Book cover of Programming Collective Intelligence: Building Smart Web 2.0 Applications

Yuxi (Hayden) Liu Author Of Python Machine Learning By Example: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

From my list on machine learning for beginners.

Why am I passionate about this?

I have been a machine learning engineer applying my ML expertise in computational advertising, and search domain. I am an author of 8 machine learning books. My first book was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. I am also a ML education enthusiast and used to teach ML courses in Toronto, Canada.  

Yuxi's book list on machine learning for beginners

Yuxi (Hayden) Liu Why did Yuxi love this book?

This was my favorite book when I started my career. It talks about how information is processed, in an intelligent way, in the internet age. It acts as a tutorial to teach developers how to code our own ML programs, from online dating services, to document analyzer, and search engine. The author did an excellent job of explaining abstract ML algorithms with clear examples. His coding style in Python reads clearly, which makes the book more beginner-friendly.

Don’t get disappointed when you know this book is more than a decade old. It was a visionary book back in the day and it is still relevant today.

By Toby Segaran,

Why should I read it?

1 author picked Programming Collective Intelligence as one of their favorite books, and they share why you should read it.

What is this book about?

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing,…


Book cover of Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD

Jakub Langr Author Of GANs in Action: Deep Learning with Generative Adversarial Networks

From my list on applied deep learning.

Why am I passionate about this?

I’ve been working in machine learning for about a decade. I’ve always been more interested in applied than theoretical problems and while blogs and MOOCs (Massive Online Open Courses) are a great way to learn, for certain deep topics only a book would do. I also teach at University of Oxford, University of Birmingham, and various FTSE100 companies. My machine learning has exposed me to many fascinating problems—from leading my own ML-focused startup through Y Combinator—to working at various companies as a consultant. I think there is currently no great curriculum for the practitioners really wanting to apply deep learning in practical cases, so I have given it my best shot.

Jakub's book list on applied deep learning

Jakub Langr Why did Jakub love this book?

Jeremy Howard is the lead author and has always been a world-class educator. This book is based on his fast.ai course, which has managed to splice all rigor, simplicity, and cutting edge techniques into one course. It also uses its custom fast.ai framework built on PyTorch, which is the dominant language for researchers. This book is very practically oriented and gets you off the ground very quickly with your own projects!

By Jeremy Howard, Sylvain Gugger,

Why should I read it?

2 authors picked Deep Learning for Coders with Fastai and Pytorch as one of their favorite books, and they share why you should read it.

What is this book about?

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.

Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to…


Book cover of Statistics and Data Analysis for Financial Engineering: With R Examples
Book cover of Asset Management: A Systematic Approach to Factor Investing
Book cover of Option Trading: Pricing and Volatility Strategies and Techniques

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,584

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in machine learning, mathematical models, and data processing?

Machine Learning 53 books
Data Processing 27 books