Fans pick 100 books like Statistics and Data Analysis for Financial Engineering

By David Ruppert, David S. Matteson,

Here are 100 books that Statistics and Data Analysis for Financial Engineering fans have personally recommended if you like Statistics and Data Analysis for Financial Engineering. Shepherd is a community of 12,000+ authors and super readers sharing their favorite books with the world.

When you buy books, we may earn a commission that helps keep our lights on (or join the rebellion as a member).

Book cover of Asset Management: A Systematic Approach to Factor Investing

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

As the book’s name suggests, it focuses on factor investing – i.e. long-term investments. Example: what do you think is the real (inflation-adjusted) return of the US stock vs bond markets over time? What is the best way to hedge inflation? (The answer may surprise you!) Nevertheless, a trader will also find inspiration in many of the market themes discussed. Example: Why is a mean-reverting strategy equivalent to shorting realized volatility?

This book has even less math than my 1st book pick, since Andrew Ang used it for his investment class for MBAs. Andrew was a well-known finance professor at Columbia University (where Warren Buffet got his Master’s). He is now Head of BlackRock (AUM=$9.5T!) Systematic Wealth Solutions. I have exchanged emails with him, and he is very friendly and patient with questions.

By Andrew Ang,

Why should I read it?

1 author picked Asset Management as one of their favorite books, and they share why you should read it.

What is this book about?

Stocks and bonds? Real estate? Hedge funds? Private equity? If you think those are the things to focus on in building an investment portfolio, Andrew Ang has accumulated a body of research that will prove otherwise.
In his new book Asset Management: A Systematic Approach to Factor Investing, Ang upends the conventional wisdom about asset allocation by showing that what matters aren't asset class labels but the bundles of overlapping risks they represent. Making investments is like eating a healthy diet, Ang says: you've got to look through the foods you eat to focus on the nutrients they contain. Failing…


Book cover of Advances in Financial Machine Learning

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

By now, you may notice that I like to recommend textbooks. I use this bestseller for my course in Financial Machine Learning at Northwestern University, but really, nobody interested in financial machine learning hasn’t read this book. The topics are highly relevant to every investor or trader – I read it at least 5 times to digest every nugget and have put them to very productive use in my trading as well as in my fintech firm predictnow.ai. It covers basic techniques such as random forest to advanced techniques such as Hierarchical Risk Parity, which is a big improvement over traditional portfolio optimization methods.

Marcos used to be Head of Machine Learning at AQR (AUM=$143B), and now is the Global Head of Quant Research at Abu Dhabi Investment Authority. He is also very approachable to his readers and students. There was seldom an email or message from me to which…

By Marcos Lopez de Prado,

Why should I read it?

1 author picked Advances in Financial Machine Learning as one of their favorite books, and they share why you should read it.

What is this book about?

Learn to understand and implement the latest machine learning innovations to improve your investment performance

Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that - until recently - only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest.

In the book, readers will learn how to:

Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives

Advances…


Book cover of Option Trading: Pricing and Volatility Strategies and Techniques

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

Disclaimer: I like Euan’s books not because he is a friend and has endorsed my books. Long before we became friends, I have bought his book, and said to myself “Wow! This is the first book about options trading that is not just a bunch of trite statements about payouts from various straddles and spreads positions!” It talks about some unique arbitrage opportunities that only professionals knew about. On the other hand, the amount of mathematics is very manageable, and can largely be skipped without affecting the practical applications of the concepts. 

By Euan Sinclair,

Why should I read it?

1 author picked Option Trading as one of their favorite books, and they share why you should read it.

What is this book about?

An A to Z options trading guide for the new millennium and the new economy Written by professional trader and quantitative analyst Euan Sinclair, Option Trading is a comprehensive guide to this discipline covering everything from historical background, contract types, and market structure to volatility measurement, forecasting, and hedging techniques. This comprehensive guide presents the detail and practical information that professional option traders need, whether they're using options to hedge, manage money, arbitrage, or engage in structured finance deals. It contains information essential to anyone in this field, including option pricing and price forecasting, the Greeks, implied volatility, volatility measurement…


Book cover of Algorithmic and High-Frequency Trading

Ernest P. Chan Author Of Quantitative Trading: How to Build Your Own Algorithmic Trading Business

From my list on quantitative trading for beginners.

Why am I passionate about this?

A noted quantitative hedge fund manager and quant finance author, Ernie is the founder of QTS Capital Management and Predictnow.ai. Previously he has applied his expertise in machine learning at IBM T.J. Watson Research Center’s Human Language Technologies group, at Morgan Stanley’s Data Mining and Artificial Intelligence Group, and at Credit Suisse’s Horizon Trading Group. Ernie was quoted by Bloomberg, the Wall Street Journal, New York Times, Forbes, and the CIO magazine, and interviewed on CNBC’s Closing Bell program. He is an adjunct faculty at Northwestern University’s Master’s in Data Science program and supervises student theses there. Ernie holds a Ph.D. in theoretical physics from Cornell University.

Ernest's book list on quantitative trading for beginners

Ernest P. Chan Why did Ernest love this book?

Finally, for those who are not afraid of math, they should read this book because there is a lot of heavy-duty math. The good news for the rest of us is you can ignore all the math and still get a lot out of it, especially knowledge about market microstructure and how to find the theoretically optimal trading strategies given some assumptions about the price dynamics. Even if you don’t want to or can’t solve those darn stochastic differential equations, you can still implement a numerical approximation. At the minimum, you will learn common trading lingo such as “walking the book” or “the ITCH feed”.

By Alvaro Cartea, Sebastian Jaimungal, Jose Penalva

Why should I read it?

1 author picked Algorithmic and High-Frequency Trading as one of their favorite books, and they share why you should read it.

What is this book about?

The design of trading algorithms requires sophisticated mathematical models backed up by reliable data. In this textbook, the authors develop models for algorithmic trading in contexts such as executing large orders, market making, targeting VWAP and other schedules, trading pairs or collection of assets, and executing in dark pools. These models are grounded on how the exchanges work, whether the algorithm is trading with better informed traders (adverse selection), and the type of information available to market participants at both ultra-high and low frequency. Algorithmic and High-Frequency Trading is the first book that combines sophisticated mathematical modelling, empirical facts and…


Book cover of The Tiger That Isn't: Seeing Through a World of Numbers

Karen C. Murdarasi Author Of Why Everything You Know about Robin Hood Is Wrong: Featuring a pirate monk, a French maid, and a surprising number of morris dancers

From my list on challenging your preconceptions.

Why am I passionate about this?

As a writer and historian, I’m all about rabbit holes. When something I’ve never heard about before catches my interest, I have to find out more—and sometimes I end up writing whole books on the subject! I have a head full of bizarre little nuggets of information, and I love reading books, like the ones here, that tell me something new and change my way of thinking. 

Karen's book list on challenging your preconceptions

Karen C. Murdarasi Why did Karen love this book?

A book on statistics that is interesting? Yes, actually. And The Tiger that Isn’t is more than just interesting, it’s useful. Maths was never my strong point at school, but even someone who never got the hang of quadratic equations can learn to ask useful questions when faced with bamboozlingly large numbers and dodgy ‘averages’. 

This book offers a way to see through statistics that are used to conceal information as much as to reveal it. It’s worth reading just for the section on rice and random distribution. And the tiger in the title? It’s what happens when you think you see a pattern (in this case, stripes in the undergrowth), but there is no pattern at all. 

By Andrew Dilnot, Michael Blastland,

Why should I read it?

1 author picked The Tiger That Isn't as one of their favorite books, and they share why you should read it.

What is this book about?

Mathematics scares and depresses most of us, but politicians, journalists and everyone in power use numbers all the time to bamboozle us. Most maths is really simple - as easy as 2+2 in fact. Better still it can be understood without any jargon, any formulas - and in fact not even many numbers. Most of it is commonsense, and by using a few really simple principles one can quickly see when maths, statistics and numbers are being abused to play tricks - or create policies - which can waste millions of pounds. It is liberating to understand when numbers are…


Book cover of Modern Mathematical Statistics with Applications

Chris Conlan Author Of Algorithmic Trading with Python: Quantitative Methods and Strategy Development

From my list on mathematics for quant finance.

Why am I passionate about this?

I am a financial data scientist. I think it is important that data scientists are highly specialized if they want to be effective in their careers. I run a business called Conlan Scientific out of Charlotte, NC where me and my team of financial data scientists tackle complicated machine learning problems for our clients. Quant trading is a gladiator’s arena of financial data science. Anyone can try it, but few succeed at it. I am sharing my top five list of math books that are essential to success in this field. I hope you enjoy.

Chris' book list on mathematics for quant finance

Chris Conlan Why did Chris love this book?

One of my favorite professors, Gretchen Martinet, used this to teach a course called “Mathematical Statistics” when I was at the University of Virginia. It is an extremely profound course full of dense but fundamental mathematical proofs in classical statistics. 

You will learn why the formula for the normal distribution is the way it is, why the sum of squares appears everywhere in statistics, and how to fit a linear regression by hand. In the same way calculus elevates our understanding of rates of changes, the book elevates your understanding of samples, averages, and distributions. Quant trading requires an intuitive sense of how data, models, and aggregates work, making this content essential for your success.

By Jay L. DeVore, Kenneth N. Berk,

Why should I read it?

1 author picked Modern Mathematical Statistics with Applications as one of their favorite books, and they share why you should read it.

What is this book about?

Modern Mathematical Statistics with Applications, Second Edition strikes a balance between mathematical foundations and statistical practice. In keeping with the recommendation that every math student should study statistics and probability with an emphasis on data analysis, accomplished authors Jay Devore and Kenneth Berk make statistical concepts and methods clear and relevant through careful explanations and a broad range of applications involving real data.

The main focus of the book is on presenting and illustrating methods of inferential statistics that are useful in research. It begins with a chapter on descriptive statistics that immediately exposes the reader to real data. The…


Book cover of The Numbers Game: The Commonsense Guide to Understanding Numbers in the News, in Politics, and in Life

Tim Harford Author Of The Data Detective: Ten Easy Rules to Make Sense of Statistics

From my list on think clearly about data.

Why am I passionate about this?

Tim Harford is the author of nine books, including The Undercover Economist and The Data Detective, and the host of the Cautionary Tales podcast. He presents the BBC Radio programs More or Less, Fifty Things That Made The Modern Economy, and How To Vaccinate The World. Tim is a senior columnist for the Financial Times, a member of Nuffield College, Oxford, and the only journalist to have been made an honorary fellow of the Royal Statistical Society.

Tim's book list on think clearly about data

Tim Harford Why did Tim love this book?

I should declare an interest here: I present a BBC Radio show that Blastland and Dilnot created. This book was effectively my “how to” manual on the way into the studio that they had vacated. It’s a wise and varied guide to the power and the pitfalls of data, poetically written and full of subtle wisdoms.

By Michael Blastland, Andrew Dilnot,

Why should I read it?

1 author picked The Numbers Game as one of their favorite books, and they share why you should read it.

What is this book about?

The Strunk and White of statistics team up to help the average person navigate the numbers in the news

Drawing on their hugely popular BBC Radio 4 show More or Less, journalist Michael Blastland and internationally known economist Andrew Dilnot delight, amuse, and convert American mathphobes by showing how our everyday experiences make sense of numbers.

The radical premise of The Numbers Game is to show how much we already know and give practical ways to use our knowledge to become cannier consumers of the media. If you've ever wondered what "average" really means, whether the scare stories about cancer…


Book cover of R in Action: Data Analysis and Graphics with R

Tilman M. Davies Author Of The Book of R: A First Course in Programming and Statistics

From my list on intro to programming and data science with R.

Why am I passionate about this?

I’m an applied statistician and academic researcher/lecturer at New Zealand’s oldest university – the University of Otago. R facilitates everything I do – research, academic publication, and teaching. It’s the latter part of my job that motivated my own book on R. From first-year statistics students who have never seen R to my own Ph.D. students using R to implement novel and highly complex statistical methods and models, my experience is that all ultimately love the ease with which the R language permits exploration, visualisation, analysis, and inference of one’s data. The ever-growing need in today’s society for skilled statisticians and data scientists means there's never been a better time to learn this essential language.

Tilman's book list on intro to programming and data science with R

Tilman M. Davies Why did Tilman love this book?

This provides a superb balance between technical aspects of R coding and the statistical methods that motivate its use. It's rare to find a book on topics like this that are written with Kabacoff's easygoing yet precise style, which makes it ideal for beginners. From my own experience, it is obvious the author has spent many years teaching this type of content, knowing where things deserve extra explanation up front and where other more technical details can be relegated to more advanced texts.

By Robert I. Kabacoff,

Why should I read it?

1 author picked R in Action as one of their favorite books, and they share why you should read it.

What is this book about?

DESCRIPTION

R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data.



R in Action, Second Edition is language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that…


Book cover of Thinking About Statistics: The Philosophical Foundations

Michael Anthony Lewis Author Of Social Workers Count: Numbers and Social Issues

From my list on quant geeks.

Why am I passionate about this?

I've had a long-time interest in two things: mathematics and social issues. This is why I got degrees in social work (Masters) and sociology (PhD) and eventually focused on the quantitative aspects of these two areas. Social Workers Count gave me the chance to marry these two interests by showing the role mathematics can play in illuminating a number of pressing social issues.

Michael's book list on quant geeks

Michael Anthony Lewis Why did Michael love this book?

Jun Otsuka, a philosopher who also has training in statistics, zooms in on their philosophical foundations.

His book discusses the metaphysical, epistemological, and semantic assumptions on which Classical statistics, Bayesian statistics, predictive/classification AI models, and causal inference are based.

For those interested in these disciplines but who're also sensitive to the philosophical issues they raise, Otsuka's book is simply amazing. Run out and get a copy as soon as possible.   

By Jun Otsuka,

Why should I read it?

1 author picked Thinking About Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

Simply stated, this book bridges the gap between statistics and philosophy. It does this by delineating the conceptual cores of various statistical methodologies (Bayesian/frequentist statistics, model selection, machine learning, causal inference, etc.) and drawing out their philosophical implications. Portraying statistical inference as an epistemic endeavor to justify hypotheses about a probabilistic model of a given empirical problem, the book explains the role of ontological, semantic, and epistemological assumptions that make such inductive inference possible. From this perspective, various statistical methodologies are characterized by their epistemological nature: Bayesian statistics by internalist epistemology, classical statistics by externalist epistemology, model selection by pragmatist…


Book cover of The Cartoon Guide to Statistics

Martin Sternstein Author Of Barron's AP Statistics

From my list on statistical insights into social issues.

Why am I passionate about this?

I taught for 45 years at Ithaca College broken by two years as Fulbright Professor in West Africa at the University of Liberia. During my years in academia, I developed several new courses including a popular “Math in Africa” class and the first U.S. course for college credit in chess theory. I’ve always had a passion for and continue to have strong interests in (1) national educational and social issues concerning equal access to math education for all and (2) teaching others about the power of mathematics and statistics to help one more deeply understand social issues.

Martin's book list on statistical insights into social issues

Martin Sternstein Why did Martin love this book?

This book is kind of a fun crash course in statistics which covers all the basic concepts at an introductory level.

The cartoons are a little bit dated, but still entertaining. There are lots of pictures and graphs which are a pleasure if you are a visual learner. The reader will come away with many useful tools to help understand real world problems.

I’m a retired math professor, but still got a real kick out of this book and especially appreciated the many good examples referenced such as gender discrimination in salaries and racial discrimination in jury selection. I recommended it to many of my struggling students.

By Larry Gonick, Woollcott Smith,

Why should I read it?

1 author picked The Cartoon Guide to Statistics as one of their favorite books, and they share why you should read it.

What is this book about?

Updated version featuring all new material. If you have ever looked for P-values by shopping at P mart, tried to watch the Bernoulli Trails on "People's Court," or think that the standard deviation is a criminal offense in six states, then you need The Cartoon Guide to Statistics to put you on the road to statistical literacy. The Cartoon Guide to Statistics covers all the central ideas of modern statistics: the summary and display of data, probability in gambling and medicine, random variables, Bernoulli Trails, the Central Limit Theorem, hypothesis testing, confidence interval estimation, and much more-all explained in simple,…


Book cover of Asset Management: A Systematic Approach to Factor Investing
Book cover of Advances in Financial Machine Learning
Book cover of Option Trading: Pricing and Volatility Strategies and Techniques

Share your top 3 reads of 2024!

And get a beautiful page showing off your 3 favorite reads.

1,588

readers submitted
so far, will you?

5 book lists we think you will like!

Interested in statistics, math, and economics?

Statistics 30 books
Math 276 books
Economics 412 books